- 11. A three stage switching structure supports 128 inlets and 128 outlets. It is proposed to use 16 first stage and third stage matrices.
- A) What is the number of switching elements in the network if is nonblocking.
- B) At peak periods, the occupancy rate of an inlet is 10%. If the number of switching elements required for nonblocking operation is reduced by a factor of 3, what is the blocking probability of the network?

Ans: Number of inlets n = 128, number of blocks r = 16, Number of inlets in each block, p = N/r = 128/16 = 8 
Number of switching elements S = 2p-1 = 2\*8 - 1 = 15 
We know that S = spr + sr<sup>2</sup>+ spr =  $15*8*16 = 15*16^2 + 15*8*16 = 7680$  
Occupancy  $\alpha = 10/100 = 0.1$  
Blocking probability  $P_B = [1 - (1 - \alpha/k)^2]^{s'}$  
S' = 7680/3 = 2560 and k = 3

12. Determine the switch advantage ratio of a three stage network with N inlets and N outlets for the cases when (a) N = 128 (b) N = 32768

Ans:

 $P_{\rm R} = 0.002$ 

(a) 
$$N = 128$$

For single stage network  $S_1 = N^2 = 28^2 = 16384$  For three stage networks  $S_3 = 4N * sqrt(2N) = 4*128*sqrt(2*128) = 8192$  Switch advantage ratio = 16384/8192 = 2

(b) N = 32768

For single stage network  $S_1 = N^2 = 32768^2 = 1.07 * 10^9$  For three stage networks  $S_3 = 4N * sqrt(2N) = 4*32768*sqrt(2*32768) = 33.55 * 10^6$  Switch advantage ratio = 1.07 \* 10<sup>9</sup>/33.55 \* 10<sup>6</sup> = 31.88 = 32

13. A three stage network is designed with the following parameters: M = N = 512, p = q = 16 and  $\alpha = 0.7$ . Calculate the blocking probability of the network if (a) s = 16 (b) s = 24 (c) s = 31 using the Lee equation. Determine the inaccuracy of the result in case of (c).

Ans:

 $\alpha = \text{probability that a given inlet is active}$  k = No. of links between first-second stage pairs M = N = 512 p = q = 16  $\alpha = 0.7$  (a) s = 16 s = k \* p k = s/p = 16/16 = 1  $P_B = [1 - (1 - \alpha/k)^2]^s = 0.22$  (b) s = 24 k = s/p = 24/16 = 1.5  $P_B = [1 - (1 - \alpha/k)^2]^s = 0.0032$  (c) s = 31 k = s/p = 31/16 = 1.93

 $P_B = [1 - (1 - \alpha/k)^2]^s = 8.6 * 10^{-8}$ 

Q.1. Calculate the maximum access time that can be permitted for the data and control memories in a TSI switch with a single input and single output trunk multiplexing 2500 channels. Also, estimate the cost of the switch and compare it with that of a single stage space division switch.

(6)

Ans:

$$t_m = \frac{125 \times 10^3}{2500 \times 2} = 25 \text{ ns}$$
  
 $C = 2 \times 2500 = 5000 \text{ units}$ 

This switch is non blocking and supports full availability. An equivalent single stage space division which uses a matrix of 2500 X 2500. Hence, the cost of such a switch is 6.25 million units

Cost advantage of time switch = 
$$\frac{6.25 \times 10^6}{5000}$$
 = 1250

Q.4.. A three stage network is designed with the following parameters: M=N=512, p=q=16 and  $\alpha=0.65$ . Calculate the blocking probability of the

M=N=512, p= q = 16 and  $\alpha$  = 0.65. Calculate the blocking probability of the network, if s=16. Symbols carry their usual meanings. (8)

## Ans:

The blocking probability 
$$P_B = [1 - (1 - \alpha / k)^2]^s$$
 Where 
$$\alpha = 0.65$$
 
$$k = p/s = 16/16 = 1$$
 
$$P_B = [1 - (1 - 0.65)^2]^{16}$$
 
$$[1 - (0.35)^2]^{16} = 0.123 \text{ Ans.}$$

Q.11. A three stage switching structure supports 100 inlets and 400 outlets. Find the number of cross points, and the number of primary and secondary switches used in the design.(6)

## Ans:

We know that 
$$m = \underline{M} \qquad \text{and} \qquad n = \underline{N} \\ M+N \qquad \qquad M+N$$

$$m = 100$$

- if m=5, n=20, there are:
   primary switches of size 5 x 5
   secondary switches of size 20 x 20
   tertiary switches of size 5 x 20
- 2. if m = 4, n = 16, there are:
  25 primary switches of size 4 x 4
  4 secondary switches of size 25 x 25
  25 tertiary switches of size 4 x 16

- **Q.13.** In a two stage network there are 512 inlets and outlets, r=s=24. If the probability that a given inlet is active is 0.8, calculate:
  - (i) The switching elements
  - (ii) Switching capacity
  - (iii) Blocking probability (6)

Ans:

$$N = M = 512$$
 ,  $\alpha = 0.8$  ,  $r = s = 24$ 

- (i) The number of switching elements:  $S = M_s + N_r = 512 \times 24 + 512 \times 24$
- (ii) Switching Capacity SC =rs =24 x 24
- (iii) Blocking Probability

$$P_{B} = \underbrace{M \alpha (s-1)-((M/r-1)) \alpha}_{rs(s-1)}$$

$$= \underbrace{512 \times 0.8(23) - (512/24-1)0.8}_{24 \times 24 (23)} = 0.7$$

Q16. A 1000 line exchange is partly folded and partly nonfolded. 40% of the subscribers are active during peak hour. If the ratio of local to external traffic is 4:1, estimate the number of trunk lines required.

Ans: 4 : 1 = 800 : 200

Switching pattern = 200

400 (folded) + 200 (Unfolded) = 600 patterns

Therefore 800 lines of local traffic and 200 lines of external traffic. For 800 lines of folded traffic, the number of switching pattern = 400 / 2 = 200

Out of 600 patterns, 40% are active.

No. of busy lines =  $0.4 \times 600 = 240$ 

4:1=192:48

192 lines are used for local traffic. 48 lines are used for trunk lines.