
Operating Systems

1

CSE 3202
Operating Systems Lab 3

Shell Programming I & II,

GREP & Basic Networking

Introduction

The shell provides a simple user interface to the UNIX system providing the user with a

command line interpreter. Shells also provide a powerful programming language with which we

can create shell programs (sometimes called shell scripts) to create useful software tools that can

be used to control or administer a UNIX system. A shell program is simply a file containing a set

of UNIX commands that are to be executed sequentially. The file needs to have executed

permissions set on it so that it can be executed just by typing in the name of the file at the

command prompt.

The shell provides much more than simply 'batch' processing of a list of UNIX commands. It has

many features of a high-level programming language, such as:

 Variables for storing data

 Decision-making controls (the if and case statements)

 Looping controls (the for,while and until loops)

 Function calls for program modularity

The best way to study shell programming is to look at as many examples as possible. Each of the

following examples are written in 3 parts:

 The shell program. (The lines are numbered only to aid with the explanation, do not type

them into the program)

 The output generated by executing the shell program

 An explanation of the program

Type each of these example programs into a file and run them, make sure that you

understand what each program does and why.

To execute a shell program held in a file named shelldemo1 do the following

$ chmod +x shelldemo1
(This puts execute permission on the file - a topic we will look at in later sessions)
$./shelldemo1
(This runs or executes the program. The dot represents your current directory)

Demo Program 1 - Demonstrates the use of comments, user-defined variables and

echo.

1. #!/bin/sh

2. #Filename: shelldemo1 Author: RS

3. #Define variables

4. name=John

5. car="Ford Escort"

6. age=21

7. #Display the contents of the variables

8. echo "My name is $name"

9. echo "I am $age years old and \c"

10. echo "I drive a $car."

Program output

My name is John

I am 21 years old and I drive a Ford Escort.

Operating Systems

2

1. #!/bin/sh

2. #Filename: shelldemo2 Author: RS

3. #Define variables

4. todaysdate=`date`

5. myworkingdirectory=`pwd`

6. #Display the contents of the variables

7. echo "The date is $todaysdate"

8. echo "My current working directory is $myworkingdirectory"

1. #!/bin/sh

2. #Filename: shelldemo3 Author: RS

3. echo "Please enter your first name: \c"

4. read firstname

5. echo "Please enter your surname: \c"

6. read surname

7. echo "Please enter your date of birth: (dd/mm/yyyy): \c"

8. read dateofbirth

9. echo "Welcome $firstname $surname, your date of birth is on record

as $dateofbirth."

1. #!/bin/sh

2. #Filename: shelldemo4 Author: RS

3. echo "This program has obtained its input from the command line"

4. echo "Welcome $1 $2, your date of birth is on record as $3."

Demo Program 2 - Demonstrates how the output of Unix commands can be stored in

user-defined variables

Program output

The date is Fri Aug 17 14:30:58 BST 2001

My present working directory is /home/martin/shelldemos

Demo Program 3 - Demonstrating how the read command is used to get input from

the user via the keyboard.

Program output (user input is shown in bold italics)

Please enter your first name: Joe

Please enter your surname: Bloggs

Please enter your date of birth (dd/mm/yyyy): 01/04/1980
Welcome Joe Bloggs, your date of birth is on record as 01/04/1980

Demo Program 4 - Demonstrating how user input can be obtained from the command

line as command line arguments.

Program output

This program is exectued by entering the command:

./shelldemo4 Joe Bloggs 01/04/1980

Welcome Joe Bloggs, your date of birth is on record as 01/04/1980.

Explanation

This program is executed by typing in the shell program name followed by 3 pieces of

information (program arguments).

The positions of the words on the command line are identified by the following special variables

(here is the full list):

$0 The command name

$1 The first argument (Joe in this example)

$2 The second argument (Bloggs in this example)
$3 The third argument (01/04/1980 in this example)
.

.

$9 The ninth argument

$# The number of arguments

$* A space separated list of all the arguments.

Operating Systems

3

Demo Program 5 - Demonstrating how decisions are made

using the if...then statement (testing and branching).

1. #!/bin/sh

2. #Filename: shelldemo5 Author: RS

3. clear

4. echo "Would you like to see a joke (y/n)? \c"

5. read reply

6. if ["$reply" = "y"]

7. then

8. echo "Question: How many surrealists does it take to change a light

bulb?"

9. echo "Answer: Fish."

10. fi

11. echo "\n\nHave a nice day."

Program output (examples of both yes and no user responses are shown)

Would you like to see a joke (y/n)? y

Question: How many surrealists does it take to change a light bulb?

Answer: Fish

Have a nice day.

Would you like to see a joke (y/n)? n

Have a nice day

Line 6 - The start of the if statement. Notice the test is in square brackets with a space either

side of them and that there is a space either side of the equals sign.

Demo Program 6 - Demonstrating how decisions are made

using the if...then...else statement (testing and branching).

1. #!/bin/sh

2. #Filename: shelldemo6 Author: RS

3. clear

4. echo "Would you like to see a joke (y/n)? \c"

5. read reply

6. if ["$reply" = "y"]

7. then

8. echo "Question: How many surrealists does it take to change a light

bulb?"

9. echo "Answer: Fish."

10. else

11. echo "Not in the mood for jokes? Never mind perhaps

another day."

12. fi

13. echo "\n\nHave a nice day."

Program output (examples of both yes and no user responses are shown)

Would you like to see a joke (y/n)? y

Question: How many surrealists does it take to change a light bulb?

Answer: Fish.

Have a nice day.

Would you like to see a joke (y/n)? n

Not in the mood for jokes? Never mind perhaps another day.

Have a nice day

Demo Program 7 - Demonstrating how decisions are made using

nested if...then...else statements (testing and branching).

1. #!/bin/sh

2. #Filename: shelldemo7 Author: RS

Operating Systems

1

3. echo "UNIX COMMAND SELECTOR"

4. echo "1. Show date"

5. echo "2. Show hostname"

6. echo "3. Show this month's calendar"

7. echo "Please make your selection (1,2,3) \c"

8. read menunumber

9. if [$menunumber -eq 1]

10. then

11. date

12. else if [$menunumber -eq 2]

13. then

14. hostname

15. else if [$menunumber -eq 3]

16. then

17. cal

18. else

19. echo "INVALID CHOICE! \07\07"

20. fi

21. fi

22. fi

23. echo "\nThank you for using the Unix command selector."

Program output (The example is for the user input of 1)

UNIX COMMAND SELECTOR

1. Show date

2. Show hostname

3. Show this month's calendar

Please make your selection (1,2,3) 1

Tues Oct 23 17:32:45 BST 2001

Thank you for using the Unix command selector.

Explanation

Lines 3-7 Display a title, menu and prompt the user to select the number of a menu option.
Line 8 - The user's response is read into a user defined variable named menunumber.
Lines 9-22 A series of nested if...then...else statements each performing a test for one of the possible menu
option numbers.
The 3 possible Unix commands are: 1. date 2. hostname 3. cal
Notice how -eq is used to test for equality between two numbers.
Notice how \07\07 are used to get the computer to beep twice.
Line 23 Displays a final ending message.

Nested if...then...else structures always look complicated as there is a lot of coding to contend with. A

simpler way of writing the nested if...then...else parts is shown below using the if...then...elif with one

final fi. The word elif is a contraction of the words else if.

if [$menunumber -eq 1]

then
date

elif [$menunumber -eq 2]

then
hostname

elif [$menunumber -eq 3]

then
cal

else

echo "INVALID CHOICE! \07\07"

fi

This may be a little better to deal with but nested if...then..elif's are still a handful. Let's look at a neater
solution to the same problem using thecase...esac program structure shown in the next example.

Operating Systems

2

Demo Program 8 - Demonstrating how decisions are made using the case...esac statement (testing

and branching).

1. echo "UNIX COMMAND SELECTOR"

2. echo "1. Show date"

3. echo "2. Show hostname"

4. echo "3. Show this month's calendar"

5. echo "Please make your selection (1,2,3) \c"

6. read menunumber

7. case $menunumber in

8. 1) date;;

9. 2) hostname;;

10. 3) cal;;

11. *) echo "INVALID CHOICE! \07\07";;

12. esac

13. echo "\nThank you for using the Unix command selector."

Program output (The example is for the user input of 1)

UNIX COMMAND SELECTOR
1. Show date
2. Show hostname

3. Show this month's calendar

Please make your selection (1,2,3) 1
Tues Oct 23 17:32:45 BST 2001

Thank you for using the Unix command selector.

Explanation

Line 7 - The first line of the case...esac statement checks to see the value held in the variable named
menunumber.
Lines 8-11 give possible branch conditions depending upon the value held in the variable menunumber.
The content of the variable is checked against the value 1, 2 or 3 or anything else (represented by the
asterisk). Note the double semicolon at the end of each test condition. (Isn't program syntax wonderful!)
Line 12 - The word esac is case spelt backwords. It identifies the end of the case statement.

Demo Program 9 - Demonstrating how looping is achieved using the for statement.

1. echo "Demonstration of looping using the for loop and a list of car

names"

2. for car in ford vauxhall rover toyota mazda subaru

3. do

4. echo $car

5. done

6. echo "\nEnd of demonstration program."

Program output

Demonstration of looping using the for loop.

ford
vauxhall
rover
toyota
mazda
subaru

End of demonstration program.

Explanation

Line 2-5 The general format of a for loop is:
for variable in list_of_items

do

Operating Systems

3

1. echo "Demonstration of looping using the for loop and a list of

arguments supplied at the command line"

2. echo "Program invoked by the command: ./shelldemo12 filename1

filename2 filename3"

3. for myfile in $*

4. do

5. cat $myfile

6. done

commandA

commandB

commandC

done

The keywords are: for, in, do and done. In this example car is a user-defined variable and the list of data

items are: ford vauxhall rover toyotamazda subaru all separated with spaces. The example only has one

command belonging to the for loop which resides between the keywords do and done. The content of the

variable named car has a different value for each pass through the loop.

Demo Program 10 - Demonstrating how looping is achieved using the for statement.

1. echo "Demonstration of looping using the for loop and a list of

filenames generated by the ls command"

2. for myfile in `ls`

3. do

4. cat $myfile

5. done

Program output

The output seen on the screen would be the contents of all the files held in the current directory.

Explanation

Line 2 - The loop variable is named myfile. The list of data items is generated by the Unix command ls.
Each pass through the loop then displays the contents of a file by using the Unix cat command. Note the
use of backquotes around the ls command.

Demo Program 11 - Demonstrating how looping is achieved using the for statement.

1. echo "Demonstration of looping using the for loop and a list of

filenames held in a text file named myfilelist"

2. for myfile in `cat myfilelist `

3. do

4. cat $myfile

5. done

Program output

The output seen on the screen would be the contents of all the files that have their names listed in the textfile

named myfilelist.

Explanation

Line 4 - The loop variable is named myfile. The list of data items is held in a text file named myfilelist.

The list of items is generated by the Unix command
cat myfilelist. Each pass through the loop then displays the contents of a file that has its name listed in the
text file named myfilelist. Note the use of backquotes around the cat myfilelist command.

Demo Program 12 - Demonstrating how looping is achieved using the for statement.

Program output

The output seen on the screen would be the contents of all the files listed on the command line when the shell
program is executed.

Operating Sysems

1

Explanation

Line 3 - The loop variable is named myfile. The list of data items is represented by the special variable

name $* (see explanation of demo program 4 for full list of special variables).

Demo Program 13 - Demonstration of 'while' loop

 You can use ((expression)) syntax to test arithmetic evaluation (condition). To replace while loop

condition while [$n -le 5] with while ((num <= 10)) to improve code readability:

#!/bin/bash

 n=1

 while (($n <= 5))

 do

 echo "Welcome $n times."

 n=$((n+1))

 done

Program outputs:

Welcome 1 times.

Welcome 2 times.

Welcome 3 times.

Welcome 4 times.

Welcome 5 times.

Globally search for Regular Expression and Print (GREP)

The grep command globally searches for regular expressions in files and prints all lines
that contain the expression. The egrep and fgrep commands are variants of grep. The
egrep is extended version of grep supporting more metacharacters (we will see them in
a table very soon). The fgrep command called fixed grep or sometimes called fast grep
searches for fixed strings (see man page for details). We will only discuss grep as it is
more commonly used. The grep command searches for a pattern of characters in text
supplied to it from:

1. a text file or number of files (command format is: grep pattern filename)
2. the output of another UNIX command that is piped to the grep command

(command format: unixcommand | grep pattern)
The grep command sends its output to the screen and does not change or affect the
file(s) being accessed.

Method 1: In conjuction with a text file

 The commands are entered at the Unix shell prompt.
 Single quotes are used if the search string contains metacharacters or spaces.
 The examples are based on the following file named datafile:

datafile

Abel Adams 80 90
Brian Brown 50 40

Cath Cookson 30 55
Dave Davidson 40 60

David Smith 60 40
Eric Erikson 60 80

Operating Sysems

2

Try out each of the following to prove that it works

 Metachar Meaning Example Explanation

1 grep Davidson
datafile

Print any line from the file named test file that
contains the text " Davidson"

2 ^ Beginning of line
anchor

grep '^A'

datafile
Print any line beginning with A.

3 $ End of line anchor grep '5$'
datafile

Prints any line ending with the character 5.

4 . Matches one
character

grep 'ks..'
datafile

Prints any line containing ks followed by any
2 single characters.

5 * Matches zero or
more characters

grep 'oo*'
datafile

Print any line containing a letter o followed
by zero or more consecutive letter os.

Use of grep command line options (Try out any of the following that don't appears
obvious to you)

1 grep -n Adams
datafile

Print any line from the file that contains Adam and show line number.

2 grep -n '^Cath'

datafile
Print any line from the file that begins with Cath and show line number.

3 grep -i 'brian'

datafile
The -i option turns off case sensitivity. It does not matter if the expression
contains any combination of upper or lowercase letters.

4 grep -v 'Eric

Erikson' datafile
Prints all lines not containing the pattern Eric Erikson. This is useful when
removing someones record from a file... look at this:
grep -v 'Eric Erikson' datafile > tempfile
mv tempfile datafile

5 grep -c 'Dav'
datafile

The -c option causes grep to print the number of lines (not occurances)
where the pattern was found.

Method 2: In conjuction with the information piped to it from another UNIX
Command

Try out each of the following and ensure that they make sense to you.

Unix
command

Description

ls –l List the current directory in long format. The output automatically goes to the screen.

ls –l | grep
‘^d’

List the current directory in long format and pipe the output of this command to the grep
command which lists all lines beginning with the lowercase letter d. This example
identifies the subdirectories that are listed by the ls –l command.

ls –l | grep
‘^-‘

List the current directory in long format and pipe the output of this command to the grep
command which lists all lines beginning with a dash. This example identifies the ordinary
files that are listed by the ls –l command.

Operating Sysems

3

Basic Networking in UNIX
(Self Study)

As we have learnt shell programming last week, we will write a very simple shell
program at the moment.

#program 1

echo “Do you want to ping?”

read reply

if [$reply -eq 1]

ping 192.168.1.desiredip

else

echo “You chose not to ping, what can I say?”

fi

This program simply pings the machine having the IP ping 192.168.1.desiredip if you
press 1. Now, we will take this ping command into a file and will run that file from the
modified version of this program

 1. Write vi testping

2. Type i to insert ping 192.168.1.desiredip into this file.
3. Press esc and :wq
4. Modify the above program as follows-

#program 2

echo “Do you want to ping?”

read reply

if [$reply -eq 1]

./testping

else

echo “You chose not to ping, what can I say?”

fi

You see- both of the programs do the same thing?

Sometimes we require to check whether the ping is successful or not. If it is not
successful, then we can show a message The Machine is Dead otherwise we can
display The Machine is Alive. In order to achieve that, we can change our first program as
follows-

#program 3

echo “Do you want to ping?”

read reply

if [$reply -eq 1]

ping 192.168.1.desiredip if

[$? != 0]

then

echo “The Host is Dead”

else

echo “The Host is alive”

fi

else

echo “You chose not to ping, what can I say?”

fi

The brief of the program is we used if [$? != 0] to see if the ping is getting a reply.

$? means the immediate system command you executed (which is in this case ping
192.168.1.desiredip). If ping gets a reply $? will get a zero value. If the ping does not
succeed, $? will get a non-zero value.

Operating Sysems

4

File Transfer Protocol

In Unix, FTP works very well when your PC is networked. You may have a server and
to-and-from that server you can transfer files that you are required to transfer. In the
wonderful world of UNIX, FTP is the de-facto method of transferring files from one
machine to another.

Run man ftp and have a look over the man page for this protocol.

1. Ensure the daemon is running

(When you are using UNIX machines, not Live CDs, you can check ensure the daemon
is running- means, with Live CDs, this cannot be tested)

Check that the daemon is running on your machine, it is the daemon that will receive ftp
connections from other systems. Log in as root and use the command service vsftpd
status if the daemon is not running you can start it using the command service vsftpd
start. You can even stop it using the command /sbin/service vstpd stop, but that
would be pointless as you need it running.

2. Create some files to transfer

Create a new directory with an appropriate name and put some text files in there, two or
three should be sufficient.

i. mkdir MACHINENUMBERDOCS (here, just make a directory that can be recognized

by you very easily, what about the pc number?)

ii. cd MACHINENUMBERDOCS

iii. vi script 1 (then insert some text), esc->:wq

iv. vi script 2 (then insert some text), esc->:wq

3. Connect to a remote machine using ftp

Create an ftp connection to the server machine using the command ftp IP address. (I
will let you know the IP address of the server machine in the class). The daemon on the
remote machine will ask you for a username and password. Use the format pc# as your
username and hithere as the password. Once you have logged in, you will be presented
with the prompt ftp >. You are now in a position to manipulate files on either machine
and transfer files between them.

(Hint : If your ftp request was returned with the message “connection refused” it is
probable that the daemon is not running on the remote system, which of course you are
able to repair)

4. Basic Navigation

Command such as ls, pwd, cd and mkdir all work as normal but if you sit on a client
machine connected to a server, these commands will only work on the files/folders of
server machine. Use these commands to work out what your server has called the
directory in which their files are held and what the files are called. In order to make these
commands on your own PC, just use ! before the commands. All of this can be done
from the FTP prompt.

You can transfer a file from your machine to your neighbours machine
using put filename or you can put a file onto your neighbours machine with a different
name using put filename newname when the file lands on the other system it will be
called newname Using put, stick a file on you neighbours machine with a changed
name.

Likewise you can copy files from server machine using get, the syntax is the same as it
is for put. Now use get to copy a file from the server.

You can end up FTP session by typing bye.

Operating Sysems

5

What did I do so that you can transfer files?

Okay, this is obvious that I did something on the server machine, so that you are able to
transfer to-and-from the server machine. Here are the steps I followed-

1. We need to create a group of users. So, we need to create the group first and then

add users to that group. Lets think our group is cse2k12 and usernames are the pc
numbers.

groupadd cse2k12

useradd –g cse2k12 pc75

2. You only can log into the server machine with a username and password. We have
the username but not the password yet.

passwd pc75

It will prompt you to type in a password twice. If it gives any errors, make sure the
password isn't a common word, has 6-8 characters, or has too many of one character.
This may seem limiting and insecure at first, but it actually enhances the security of each
user.

3. Now, we create a folder and text files that are to be transferred to the client machine.

mkdir /home/ftp-docs

vi serverscript1 (put some text), esc->:wq

vi serverscript2 (put some text), esc->:wq

4. Afterwards, we need to put permission on this folder so that the content of the folder
can be read-write-execute by the client on the client machine after transferring them
from the server.

chmod 777 /home/ftp-docs

5. Also, we need to state which group of people (in this case, it is none other than our
beloved cse2k12 ) will have access (own) that folder.

chown root:cse12 /home/ftp-docs

Use of here file

Finally let‟s consider how ftp can be used with no human intervention at all. FTP in linux
does allow macro‟s to be written and there is an ftp flag that incorporates them. However
we will instead look at using a “here” as this is generic to all UNIX environment.

As you know, a UNIX command can run using << to redirect input from a file. So you
could put the ftp commands that you want to run into a file and type ftp << filename then
instead FTP receiving commands from STDIN (the keyboard) the inputs would be taken
from the file. This applies to any command.

In UNIX it is also possible to create a “here file”. Basically if you only have one or two
commands to input you do not want to create a separate file to hold them, instead it is
appropriate to incorporate them into your code. It goes like this :

Operating Sysems

6

ftp << EOF

put filename

bye

EOF

Instead of the command receiving input from an external file, EOF says “the input is
coming up, when its finished you will see EOF (End Of File)

Courtesy: Rushdi Shams Sir

