
CSE417: WEB ENGINEERING
Daffodil International University

You Will Be Able To

✔ Know about Server Side Programming
✔ PHP and its workings.
✔ Apply PHP syntax

✔ variables, operators, if...else...and switch, while, do while, and for.
✔ Some useful PHP functions

Contents

• Basic PHP

Server-Side Dynamic Web Programming
• CGI is one of the most common approaches to server-side programming

▪ Universal support: (almost) Every server supports CGI programming. A great deal of ready-to-use
CGI code. Most APIs (Application Programming Interfaces) also allow CGI programming.

▪ Choice of languages: CGI is extremely general, so that programs may be written in nearly any
language. Perl is by far the most popular, with the result that many people think that CGI means
Perl. But C, C++, Ruby or Python are also used for CGI programming.

▪ Drawbacks: A separate process is run every time the script is requested. A distinction is made
between HTML pages and code.

• Other server-side alternatives try to avoid the drawbacks
▪ Server-Side Includes (SSI): Code is embedded in HTML pages, and evaluated on the server while

the pages are being served. Add dynamically generated content to an existing HTML page, without
having to serve the entire page via a CGI program.

▪ Active Server Pages (ASP, Microsoft) : The ASP engine is integrated into the web server so it does
not require an additional process. It allows programmers to mix code within HTML pages instead of
writing separate programs. (Drawback(?) Must be run on a server using Microsoft server software.)

▪ Java Servlets (Sun): As CGI scripts, they are code that creates documents. These must be
compiled as classes which are dynamically loaded by the web server when they are run.

▪ Java Server Pages (JSP): Like ASP, another technology that allows developers to embed Java in
web pages.

PHP

• PHP is similar to JavaScript, only it’s a server-side language
▪ PHP code is embedded in HTML using tags
▪ when a page request arrives, the server recognizes PHP content via the file extension (.php

or .phtml)
▪ the server executes the PHP code, substitutes output into the HTML page
▪ the resulting page is then downloaded to the client
▪ user never sees the PHP code, only the output in the page

• developed in 1995 by Rasmus Lerdorf (member of the Apache Group)
▪ originally designed as a tool for tracking visitors at Lerdorf's Web site
▪ within 2 years, widely used in conjunction with the Apache server
▪ developed into full-featured, scripting language for server-side programming
▪ free, open-source
▪ server plug-ins exist for various servers
▪ now fully integrated to work with mySQL databases

• The acronym PHP means (in a slightly recursive definition)
▪ PHP: Hypertext Preprocessor

What do You Need?

• Our server supports PHP
▪ You don't need to do anything special! *
▪ You don't need to compile anything or install any extra tools!
▪ Create some .php files in your web directory - and the server will parse them for you.

 * Slightly different rules apply when dealing with an SQL database (as will be explained when we get to that point).

• Most servers support PHP
▪ Download PHP for free here: http://www.php.net/downloads.php
▪ Download MySQL for free here: http://www.mysql.com/downloads/index.html
▪ Download Apache for free here: http://httpd.apache.org/download.cgi

▪ INSTALL XAMPP/WAMPP and get it all!!!

Basic PHP syntax
A PHP scripting block always starts with <?php and ends with ?>. A PHP scripting block
can be placed (almost) anywhere in an HTML document.

<html>
<!-- hello.php -->
<head><title>Hello World</title></head>
<body>
 <p>This is going to be ignored by the PHP interpreter.</p>

 <?php echo ‘<p>While this is going to be parsed.</p>‘; ?>

 <p>This will also be ignored by PHP.</p>

 <?php print(‘<p>Hello and welcome to <i>my</i> page!</p>');
 ?>

 <?php

 //This is a comment

 /*
 This is
 a comment
 block
 */
 ?>

</body>
</html>

The server executes the print and echo statements, substitutes output.

print and echo
for output

a semicolon (;)
at the end of each
statement

// for a single-line comment
/* and */ for a large
comment block.

Scalars
All variables in PHP start with a $ sign symbol. A variable's type is determined by the
 context in which that variable is used (i.e. there is no strong-typing in PHP).
<html><head></head>
<!-- scalars.php -->
<body> <p>
<?php
$foo = true; if ($foo) echo "It is TRUE!
 \n";
$txt='1234'; echo "$txt
 \n";
$a = 1234; echo "$a
 \n";
$a = -123;
echo "$a
 \n";
$a = 1.234;
echo "$a
 \n";
$a = 1.2e3;
echo "$a
 \n";
$a = 7E-10;
echo "$a
 \n";
echo 'Arnold once said: "I\'ll be back"', "
 \n";
$beer = 'Heineken';
echo "$beer's taste is great
 \n";
$str = <<<EOD
Example of string
spanning multiple lines
using “heredoc” syntax.
EOD;
echo $str;
?>
</p>
</body>
</html>

Four scalar types:
boolean
 true or false
integer,
float,
 floating point numbers
string
 single quoted
 double quoted

Arrays
An array in PHP is actually an ordered map. A map is a type that maps values to keys.

array() = creates arrays<?php
$arr = array("foo" => "bar", 12 =>
true);
echo $arr["foo"]; // bar
echo $arr[12]; // 1
?>

key = either an integer or a string.
value = any PHP type.

<?php
array(5 => 43, 32, 56, "b" => 12);
array(5 => 43, 6 => 32, 7 => 56, "b" => 12);
?>

if no key, the maximum of the
integer indices + 1.
if an existing key, its value will be
overwritten.

<?php
$arr = array(5 => 1, 12 => 2);
$arr[] = 56; // the same as $arr[13] = 56;
$arr["x"] = 42; // adds a new element
unset($arr[5]); // removes the element
unset($arr); // deletes the whole array
$a = array(1 => 'one', 2 => 'two', 3 => 'three');
unset($a[2]);
$b = array_values($a);
?>

can set values in an array

unset() removes a
key/value pair

*Find more on arrays

array_values()
makes reindexing effect
(indexing numerically)

 Constants
A constant is an identifier (name) for a simple value. A constant is case-sensitive by
 default. By convention, constant identifiers are always uppercase.

<?php

// Valid constant names
define("FOO", "something");
define("FOO2", "something else");
define("FOO_BAR", "something more");

// Invalid constant names (they shouldn’t start
// with a number!)

define("2FOO", "something");

// This is valid, but should be avoided:
// PHP may one day provide a “magical” constant
// that will break your script
define("__FOO__", "something");

?>

You can access
constants anywhere
in your script
without regard to
scope.

Operators

• Arithmetic Operators: +, -, *,/ , %, ++, --
• Assignment Operators: =, +=, -=, *=, /=, %=

• Comparison Operators: ==, !=, >, <, >=, <=
• Logical Operators: &&, ||, !
• String Operators: . and .= (for string concatenation)

Example Is the same as
x+=y x=x+y
x-=y x=x-y
x*=y x=x*y
x/=y x=x/y
x%=y x=x%y

$a = "Hello ";
$b = $a . "World!"; // now $b contains "Hello World!"

$a = "Hello ";
$a .= "World!";

Conditionals: if else
Can execute a set of code depending on a condition

<html><head></head>
<!-- if-cond.php -->
<body>

<?php
$d=date("D");
if ($d=="Fri")
 echo "Have a nice weekend!
";
else
 echo "Have a nice day!
";

$x=10;
if ($x==10)
{
 echo "Hello
";
 echo "Good morning
";
}

?>

</body>
</html>

if (condition)
code to be executed if condition
is true;
else
code to be executed if condition
is false;

date() is a built-in PHP function
that can be called with many
different parameters to return the
date (and/or local time) in
various formats

In this case we get a three letter
string for the day of the week.

Conditionals: switch

<html><head></head>
<body>
<!–- switch-cond.php -->
<?php
$x = rand(1,5); // random integer
echo “x = $x

”;
switch ($x)
{
case 1:
 echo "Number 1";
 break;
case 2:
 echo "Number 2";
 break;
case 3:
 echo "Number 3";
 break;
default:
 echo "No number between 1 and 3";
 break;
}
?>

</body>
</html>

Can select one of many sets of lines to execute

switch (expression)
{
case label1:
 code to be executed if
expression = label1;
 break;
case label2:
 code to be executed if
expression = label2;
 break;
default:
 code to be executed
 if expression is different
 from both label1 and label2;
 break;
}

Looping: while and do-while
Can loop depending on a condition

<html><head></head>
<body>

<?php
$i=1;
while($i <= 5)
{
 echo "The number is $i
";
 $i++;
}
?>

</body>
</html>

loops through a block of code if, and
as long as, a specified condition is
true

<html><head></head>
<body>

<?php
$i=0;
do
{
 $i++;
 echo "The number is $i
";
}
while($i <= 10);
?>

</body>
</html>

loops through a block of code once,
and then repeats the loop as long
as a special condition is true (so
will always execute at least once)

Looping: for and foreach
Can loop depending on a "counter"

<?php
for ($i=1; $i<=5; $i++)
{
echo "Hello World!
";
}
?>

loops through a block of code a
specified number of times

<?php
$a_array = array(1, 2, 3, 4);
foreach ($a_array as $value)
{
 $value = $value * 2;
 echo “$value
 \n”;
}
?>

loops through a block of code for each
element in an array

<?php
$a_array=array("a","b","c");
foreach ($a_array as $key => $value)
{
 echo $key." = ".$value."\n";
}
?>

User Defined Functions
Can define a function using syntax such as the following:

<?php
function foo($arg_1, $arg_2, /* ..., */ $arg_n)
{
 echo "Example function.\n";
 return $retval;
}
?>

Can also define conditional
functions, functions within functions,
and recursive functions.

<?php
function square($num)
{
 return $num * $num;
}
echo square(4);
?>

<?php
function small_numbers()
{
 return array (0, 1, 2);
}
list ($zero, $one, $two) = small_numbers();
echo $zero, $one, $two;
?>

Can return a value of any type

<?php
function takes_array($input)
{
 echo "$input[0] + $input[1] = ", $input[0]+$input[1];
}
 takes_array(array(1,2));
?>

PHP Functions

<?php
function addNumbers(int $a, int $b) {

 return $a + $b;
}
echo addNumbers(5, "5 days");
// since strict is NOT enabled "5 days" is changed to int(5), and it will return 10

?>

<?php declare(strict_types=1); // strict requirement
 //Same code inside as previous function
// since strict is enabled and "5 days" is not an integer, an error will be thrown

?>

•

https://www.w3schools.com/php/php_functions.asp

Variable Scope
The scope of a variable is the context within which it is defined.

<?php
$a = 1; /* limited variable scope */
function Test()
{
 echo $a;
 /* reference to local scope variable
*/
}
Test();
?>

The scope is local within functions,
and hence the value of $a is
undefined in the “echo” statement.

<?php
$a = 1;
$b = 2;
function Sum()
{
 global $a, $b;
 $b = $a + $b;
}
Sum();
echo $b;
?>

global

refers to its
global
version.

<?php
function Test()
{
 static $a = 0;
 echo $a;
 $a++;
}
Test1();
Test1();
Test1();
?>

static

does not lose
its value.

Exercise

• Design a form which calculate sum of two integers given by the user.
• READINGS/Practice

▪ M Schafer: Ch. 29, 30
▪ http://uk.php.net/tut.php
▪ http://www.w3schools.com/php/default.asp
▪ http://php.resourceindex.com/

http://uk.php.net/tut.php
http://www.w3schools.com/php/default.asp
http://php.resourceindex.com/

Acknowledgement

• This module is designed and created with the help from following
sources-
▪ https://cgi.csc.liv.ac.uk/~ullrich/COMP519/
▪ http://www.csc.liv.ac.uk/~martin/teaching/comp519/
▪

https://cgi.csc.liv.ac.uk/~ullrich/COMP519/
http://www.csc.liv.ac.uk/~martin/teaching/comp519/

