
CSE417: WEB ENGINEERING
Daffodil International University

You Will Be Able To

✔ Work with
✔ forms, cookies, files, time and date.

✔ Create a basic checker for user-entered data.

Contents

● Including Files, time and date
● Forms and Validation
● Cookies
● Session
● Handling Files

Including Files
The include() statement includes and evaluates the specified file.

vars.php
<?php

$color = 'green';
$fruit = 'apple';

?>

test.php
<?php

echo "A $color $fruit"; // A

include 'vars.php';

echo "A $color $fruit"; // A green apple

?>

*The scope of variables in “included” files depends on where the “include” file is added!
You can use the include_once, require, and require_once statements in similar ways.

<?php

function foo()
{
 global $color;

 include ('vars.php‘);

 echo "A $color $fruit";
}

/* vars.php is in the scope of foo() so *
 * $fruit is NOT available outside of this *
 * scope. $color is because we declared it *
 * as global. */

foo(); // A green apple
echo "A $color $fruit"; // A green

?>

PHP Information
The phpinfo() function is used to output PHP information about the version installed

on the server, parameters selected when installed, etc.

<html><head></head>
<!– info.php
<body>
<?php
// Show all PHP information
phpinfo();
?>
<?php
// Show only the general information
phpinfo(INFO_GENERAL);
?>
</body>
</html>

INFO_GENERAL The configuration line,
php.ini location,
build date,
Web Server,
System and more

INFO_CREDITS PHP 4 credits
INFO_CONFIGURATION Local and master values

 for php directives
INFO_MODULES Loaded modules
INFO_ENVIRONMENT Environment variable

 information
INFO_VARIABLES All predefined variables

 from EGPCS

INFO_LICENSE PHP license information
INFO_ALL Shows all of the above (default)

Server Variables
The $_SERVER array variable is a reserved variable that contains all server information.

<html><head></head>
<body>

<?php
echo "Referer: " . $_SERVER["HTTP_REFERER"] . "
";
echo "Browser: " . $_SERVER["HTTP_USER_AGENT"] . "
";
echo "User's IP address: " . $_SERVER["REMOTE_ADDR"] ;
?>

</body>
</html>

The $_SERVER is a super global variable, i.e. it's available in all scopes of a PHP script.

PHP Global Variables - Superglobals:
The PHP superglobal variables are:
$GLOBALS, $_SERVER, $_REQUEST, $_POST, $_GET, $_FILES, $_ENV, $_COOKIE,
$_SESSION
What purpose do they serve?

https://www.w3schools.com/php/php_superglobals.asp

Form Handling
Any form element is automatically available via one of the built-in PHP variables (provided

the element has a “name” defined with it).

<html>
<-- form.html -->
<body>
<form action="welcome.php" method="POST">
Enter your name: <input type="text" name= "name" />

Enter your age: <input type="text" name= "age" />

<input type="submit" /> <input type="reset" />
</form>
</body>
</html>

<html>
<!–- welcome.php COMP 519 -->
<body>

Welcome <?php echo $_POST["name"].”.”; ?>

You are <?php echo $_POST["age"]; ?> years old!

</body>
</html>

$_POST
contains all POST data.
$_GET
contains all GET data.

WHAT IS THE OUTPUT?

Required Fields in User-Entered Data
A multipurpose script which asks users for some basic contact information and then checks to
see that the required fields have been entered.
<html>
<!-- form_checker.php -->
<head>
<title>PHP Form example</title>
</head>
<body>
<?php
/*declare some functions*/

function print_form($f_name, $l_name, $email, $os)
{
?>

 <form action="form_checker.php" method=“POST">
 First Name: <input type="text" name="f_name" value="<?php echo $f_name?>“ />

 Last Name *:<input type="text" name="l_name" value="<?php echo $l_name?>“ />

 Email Address *:<input type="text" name="email" value="<?php echo $email?>“ />

 Operating System: <input type="text" name="os" value="<?php echo $os?>“ />

 <input type="submit" name="submit" value="Submit“ /> <input type=“reset“ />
 </form>

<?php
} //** end of “print_from” function

Print Function

Check and Confirm Functions
function check_form ($f_name, $l_name, $email, $os)
{
 if (!$l_name||!$email){
 echo "<h3>You are missing some required fields!</h3>";
 print_form($f_name, $l_name, $email, $os);
 }
 else{
 confirm_form($f_name, $l_name, $email, $os);
 }
} //** end of “check_form” function

function confirm_form ($f_name, $l_name, $email, $os)
{
?>

<h2>Thanks! Below is the information you have sent to us.</h2>
<h3>Contact Info</h3>

<?php
echo "Name: $f_name $l_name
";
echo "Email: $email
";
echo "OS: $os";
} //** end of “confirm_form” function

Main Program
/*Main Program*/

if (!$_POST["submit"])
{
?>

 <h3>Please enter your information</h3>
 <p>Fields with a "*" are required.</p>

<?php
 print_form("","","","");
}
else{

check_form($_POST["f_name"],$_POST["l_name"],$_POST["email"],$_POST["os"]);
}
?>

</body>
</html>

 Cookie Workings
setcookie(name,value,expire,path,domain) creates cookies.

<?php
setcookie("uname", $_POST["name"], time()+36000);
?>
<html>
<body>
<p>
Dear <?php echo $_POST["name"] ?>, a cookie was set on this
page! The cookie will be active when the client has sent the
cookie back to the server.
</p>
</body>
</html>

NOTE:
setcookie() must appear
BEFORE <html> (or
any output) as it’s part
of the header
information sent with
the page.

<html>
<body>
<?php
if (isset($_COOKIE["uname"]))
echo "Welcome " . $_COOKIE["uname"] . "!
";
else
echo "You are not logged in!
";
?>
</body>
</html> use the cookie name as a

variable

isset()
finds out if a cookie is set

$_COOKIE
contains all COOKIE data.

Session
• When you work with an application, you open it, do some changes, and then you

close it. This is much like a Session.
▪ HTTP address doesn't maintain state.
▪ Session variables solve this problem by storing user information to be used across multiple

pages (e.g. username, favorite color, etc).
▪ By default, session variables last until the user closes the browser.
▪ Session variables hold information about one single user
▪ available to all pages in one application. ie, logged in

File Open
The fopen("file_name","mode") function is used to open files in PHP.

<?php
$fh=fopen("welcome.txt","r");
?>

r Read only. r+ Read/Write.
w Write only. w+ Read/Write.
a Append. a+ Read/Append.
x Create and open for write only. x+ Create and open for read/write.

If the fopen() function is unable to open
the specified file, it returns 0 (false).

<?php
if
(!($fh=fopen("welcome.txt","r")))
exit("Unable to open file!");
?>

For w, and a, if no file exists, it tries to create it
(use with caution, i.e. check that this is the case,
otherwise you’ll overwrite an existing file).
For x if a file exists, it returns an error.

File Workings
 fclose() closes a file. feof() determines if the end is true.
fgetc() reads a single character

<?php
$myFile = "welcome.txt";
if (!($fh=fopen($myFile,'r')))
exit("Unable to open file.");
while (!feof($fh))
{
$x=fgetc($fh);
echo $x;
}
fclose($fh);
?>

<?php
$myFile = "welcome.txt";
$fh = fopen($myFile, 'r');
$theData = fgets($fh);
fclose($fh);
echo $theData;
?>

fgets() reads a line of data
fwrite(), fputs ()
writes a string with and without \n

<?php
$myFile = "testFile.txt";
$fh = fopen($myFile, 'a') or
die("can't open file");
$stringData = "New Stuff 1\n";
fwrite($fh, $stringData);
$stringData = "New Stuff 2\n";
fwrite($fh, $stringData);
fclose($fh);
?>

file() reads entire file into an array

<?php
$lines = file('welcome.txt');
foreach ($lines as $l_num =>
$line)
{
 echo "Line #{$l_num}:“
.$line.”
”;
}
?>

Getting Time and Date
date() and time () formats a time or a date.

<?php
//Prints something like: Monday
echo date("l");

//Like: Monday 15th of January 2003 05:51:38 AM
echo date("l jS \of F Y h:i:s A");

//Like: Monday the 15th
echo date("l \\t\h\e jS");
?>

date() returns a string
formatted according to the
specified format.

*Here is more on date/time formats: http://php.net/date

<?php
$nextWeek = time() + (7 * 24 * 60 * 60);
 // 7 days; 24 hours; 60 mins; 60secs
echo 'Now: '. date('Y-m-d') ."\n";
echo 'Next Week: '. date('Y-m-d', $nextWeek) ."\n";
?>

time() returns
current Unix
timestamp

Object oriented programming in PHP
• PHP, like most modern programming languages (C++, Java, Perl, JavaScript, etc.),

supports the creation of objects.
• Creating an object requires you to first define an object class (containing variables

and/or function definitions) and then using the “new” keyword to create an instance of
the object class. (Note that the object must be defined before you instantiate it.)

<?php
// Assume that the “Person” object has been previously defined. . .

$x = new Person; // creates an instance of the Person class (*no* quotes)

// The object type need not be “hardcoded” into the declaration.

$object_type = ‘Person’;
$y = new $object_type; // equivalent to $y = new Person;

$z = new Vehicle(‘Jaguar’,’green’); // creating an object and passing
 // arguments to its constructor

?>

Defining (declaring) a class
• Use the “class” keyword which includes the class name (case-insensitive, but

otherwise following the rules for PHP identifiers). Note: The name “stdClass” is
reserved for use by the PHP interpreter.

<?php
class Person
{
 var $name;

 function set_name($new_name) {
 $name = $this -> new_name;
 }

 function get_name() {
 return $this -> name;
 }

}

• Use the “$this” variable when accessing properties and functions of the current
object. Inside a method this variable contains a reference to the object on which
the method was called.

Declaring a class (cont.)
• Properties and functions can be declared as “public” (accessible outside the

object’s scope), “private” (accessible only by methods within the same class), or
“protected” (accessible only through the class methods and the class methods of
classes inheriting from the class.

• Note that unless a property is going to be explicitly declared as public, private, or
protected, it need not be declared before being used (like regular PHP variables).

<?php
class Person
{
 protected $name;
 protected $age;

 function set_name($new_name) {
 $name = $this -> new_name;
 }

 function get_name() {
 return $this -> name;
 }

}

Declaring a class (cont.)
• Classes can also have their own constants defined (using the “const” keyword), can

have their own static properties and functions (using the keyword “static” before
“var” or “function”), and can also can constructors and destructors (see below).

• Static properties and functions are accessed (see below) using a different format
than usual for objects, and static functions cannot access the objects properties (i.e.
the variable $this is not defined inside of a static function).

<?php

class HTMLtable {
 static function start() {
 echo “<table> \n”;
 }
 static function end() {
 echo “</table> \n”;
 }
}

HTMLtable::start();

?>

Accessing properties and methods

• Once you have an object, you access methods and properties (variables) of the
object using the -> notation.

<?php

$me = new Person;

$me -> set_name(‘Russ’);
$me -> print_name();
$name = $me -> get_name();
echo $me -> get_name();

$age = 36;
$me -> set_age($age);

?>

Constructors and destructors
• Constructors are methods that are (generally) used to initialize the object’s

properties with values as the object is created. Declare a constructor function in an
object by writing a function with the name __construct().

• Destructors (defined with a function name of __destructor()) are called when an
object is destroyed, such as when the last reference to an object is removed or the
end of the script is reached (the usefulness of destructors in PHP is limited, since,
for example dynamic memory allocation isn’t possible in the same way that it is in
C/C++).
<?php
class Person {
 protected $name;
 protected $age;
 function __construct($new_name, $new_age) {
 $this -> name = $new_name;
 $this -> age = $new_age;
 }
 // . . . other functions here . . .
}

$p = new Person(‘Bob Jones’, 45);
$q = new Person(‘Hamilton Lincoln’, 67);
?>

Inheritance
• Use the “extends” keyword in the class definition to define a new object that inherits

from another.

<?php
 class Employee extends Person {
 var $salary;

 function __construct($new_name, $new_age, $new_salary); {
 $this -> salary = $new_salary;
 parent::__construct($new_name, $new_age); // call the

constructor
 // of parent object
 }
 function update_salary($new_salary) {
 $this -> salary = $new_salary;
 }
$emp = new Employee(‘Dave Underwood’, 25, 25000);

?>

Inheritance (cont.)
• The constructor of the parent isn’t called unless the child explicitly references it (as

in this previous case). There is no automatic chain of calls to constructors in a
sequence of objects defined through inheritance.

• You could “hard-code” the call to the parent constructor using the function call
“Person::__construct($new_name, $new_age);” but it’s typically better to define
it in the manner given using the parent::method() notation. The same manner is
used to call the method of a parent that has been overridden by its child.

• You can use the “self” keyword to ensure that a method is called on the current

class (if a method might be subclassed), in this style self::method();

• To check if an object is of a particular class, you can use the instanceof
operator.

 if ($p instanceof Employee) {
 // do something here
 }

More on classes
• You can also define interfaces for objects (for which any object that uses that

interface must provide implementations of certain methods), and you can define
abstract classes or methods (that must be overridden by its children).

• The keyword “final” can be used to denote a method that cannot be overridden by
its children.

class Person {
 var $name;

 final function get_name() {
 return $this -> name;
 }
}

More on classes (cont.)

• There are methods for “introspection” about classes, i.e. the ability of a program to
examine an object’s characteristics.

For example, the function class_exists() can be used (surprise!) to determine
whether a class exists or not.

The function get_declared_classes() returns an array of declared classes.

 $classes = get_declared_classes();

You can also get an array of method names in any of the following (equivalent)
manners:

 $methods = get_class_methods(Person);
 $methods = get_class_methods(‘Person’);
 $class = ‘Person’;
 $methods = get_class_methods($class);

More introspection functions
• There are a wide variety of introspection functions, several more are listed below.

get_class_vars($object); /* gets an associative array that maps
 property names to values (including
 inherited properties), but it *only*
 gets properties that have default
 values (those initialized with
 simple constants) */

is_object($object); // returns a boolean value

get_class($object); /* returns the class to which an object
 belongs */

method_exists($object, $method); // returns a boolean value

get_object_vars($object); /* returns an associative array
 mapping properties to values (for
 those values that are set (i.e.
 not null) */

Exercise

• Design a form and validate its data.
• Design a user registration system
• READINGS/Practice

▪ M Schafer: Ch. 29-32
▪ https://www.w3schools.com/php/php_form_validation.asp
▪ Designing a Sign-up/Log-in page

https://www.w3schools.com/php/php_form_validation.asp
https://www.youtube.com/watch?v=mn0ucCuNOTI

Acknowledgement

• This module is designed and created with the help from following
sources-
▪ https://cgi.csc.liv.ac.uk/~ullrich/COMP519/
▪ http://www.csc.liv.ac.uk/~martin/teaching/comp519/
▪

https://cgi.csc.liv.ac.uk/~ullrich/COMP519/
http://www.csc.liv.ac.uk/~martin/teaching/comp519/

