

The Role of the Lexical Analyzer
 Roles

 Primary role: Scan a source program (a string) and break it up into small, meaningful
units, called tokens.

 Example: position := initial + rate * 60;

 Transform into meaningful units: identifiers, constants, operators, and punctuation.

 Other roles:

 Removal of comments

 Case conversion

 Removal of white spaces

Why separate LA from parser?

 Simpler design of both LA and parser

 More efficient compiler

 More portable compiler

Tokens
 Examples of Tokens

 Operators = + − > ({ := == <>

 Keywords if while for int double

 Numeric literals 43 6.035 -3.6e10 0x13F3A

 Character literals ‘a’ ‘~’ ‘\’’

 String literals “3.142” “aBcDe” “\”

• Examples of non-tokens

 White space space(‘ ’) tab(‘\t’) eoln(‘\n’)

 Comments /*this is not a token*/

Interaction of Lexical analyzer and parser

 Example
Lexical

analyzer

symbol

table

parserSource

program

token

Nexttoken()

How it works

 The Lexical analyzer perform certain other tasks besides
identification of tokens. One such task is stripping out
comments and whitespace (blank, newline, tab, and perhaps
other characters that are used to separate tokens in the input).

Sometimes, lexical analyzers are divided into two processes:

 a) Scanning consists of the simple processes that do not require
tokenization of the input, such as deletion of comments and
compaction of consecutive whitespace characters into one.

 b) Lexical analysis proper is the more complex portion, where the
scanner produces the sequence of tokens as output.

 Type of tokens in C++:

 Constants:

 char constants: ‘a’

 string constants: “I=%d”

 int constants: 50

 float point constants

 Identifiers: i, j, counter, ……

 Reserved words: main, int, for, …

 Operators: +, =, ++, /, …

 Misc. symbols: (,), {, }, …

main() {

int i, j;

for (I=0; I<50; I++) {

printf(“I = %d”, I);

}

}

Tokens, Patterns, and Lexemes
 Token: a certain classification of entities of a program.

 four kinds of tokens in previous example: identifiers,
operators, constraints, and punctuation.

 Lexeme: A specific instance of a token. Used to
differentiate tokens. For instance, both position and initial
belong to the identifier class, however each a different
lexeme.

 Patterns: Rule describing how tokens are specified in a
program.

Example…cntd

printf (“Total = %d\n”, score) ;

Lexical Errors

fi (a==f(x)) - fi is misspelled or keyword? Or undeclared
function identifier?

 If fi is a valid lexeme for the token id, the lexical analyzer
must return the token id to the parser and let some other
phase of the compiler - handle the error

How?

1. Delete one character from the remaining input.

2. Insert a missing character into the remaining input.

3. Replace a character by another character.

4. Transpose two adjacent characters.

Type of Errors

 Lexical : name of some identifier typed incorrectly

 Syntactical : missing semicolon or unbalanced
parenthesis

 Semantical : incompatible value assignment

 Logical : code not reachable, infinite loop

Errors Recovery Strategies

 Panic mode

 Statement mode

 Error productions

 Global correction

Errors Recovery Strategies(Cont.)

Panic Mode:
When a parser encounters an error anywhere in the statement, it
ignores the rest of the statement by not processing input from
erroneous input to delimiter, such as semi-colon. This is the easiest
way of error-recovery and also, it prevents the parser from
developing infinite loops.

Statement Mode:
When a parser encounters an error, it tries to take corrective
measures so that the rest of inputs of statement allow the parser to
parse ahead. For example, inserting a missing semicolon, replacing
comma with a semicolon etc. Parser designers have to be careful
here because one wrong correction may lead to an infinite loop.

Errors Recovery Strategies(Cont.)

Error productions:
Some common errors are known to the compiler designers that
may occur in the code. In addition, the designers can create
augmented grammar to be used, as productions that generate
erroneous constructs when these errors are encountered.

Global correction:
The parser considers the program in hand as a whole and tries to
figure out what the program is intended to do and tries to find out
a closest match for it, which is error-free. When an erroneous input
(statement) X is fed, it creates a parse tree for some closest error-
free statement Y. This may allow the parser to make minimal
changes in the source code, but due to the complexity (time and
space) of this strategy, it has not been implemented in practice yet.

