
Web Engineering

HTTP Protocol

Internet and Web

HTML tells the browser how to present the

content to the user.

Web and HyperText Transfer Protocol (HTTP)

First some jargon

 Web page consists of objects

 Object can be HTML file, JPEG image, Java applet, audio

file,…

 Web page consists of base HTML-file which includes several

referenced objects

 Each object is addressable by a URL

 Example URL:
www.someschool.edu/someDept/pic.gif

host name
path name

URL

HTTP overview

HTTP: hypertext transfer

protocol

 Web’s application layer protocol

 client/server model

 client: browser that requests,

receives, “displays” Web

objects

 server:Web server sends

objects in response to requests

 HTTP 1.0: RFC 1945

 HTTP 1.1: RFC 2068

PC running

Explorer

Server

running

Apache Web

server

Mac running

Navigator

Ports

❑ The TCP port numbers from 0

to 1023 are reserved for well-

known services.

❑ Don’t use these ports for your

own custom server programs!

HTTP overview (continued)

Uses TCP:

 client initiates TCP connection

(creates socket) to server, port 80

 server accepts TCP connection

from client

 HTTP messages (application-layer

protocol messages) exchanged

between browser (HTTP client)

and Web server (HTTP server)

 TCP connection closed

HTTP is “stateless”

 server maintains no

information about past

client requests

Protocols that maintain “state”

are complex!

 past history (state) must be

maintained

 if server/client crashes, their

views of “state” may be

inconsistent, must be

reconciled

aside

HTTP connections

Nonpersistent HTTP

 At most one object is sent

over a TCP connection.

 HTTP/1.0 uses nonpersistent

HTTP

Persistent HTTP

 Multiple objects can be sent

over single TCP connection

between client and server.

 HTTP/1.1 uses persistent

connections in default mode

Nonpersistent HTTP

Suppose user enters URL
www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP connection

to HTTP server (process) at

www.someSchool.edu on port 80

2. HTTP client sends HTTP

request message (containing

URL) into TCP connection

socket. Message indicates that

client wants object

someDepartment/home.index

1b. HTTP server at host

www.someSchool.edu waiting

for TCP connection at port 80.

“accepts” connection, notifying

client

3. HTTP server receives request

message, forms response

message containing requested

object, and sends message into

its socket

time

(contains text,

references to

10

jpeg images)

Nonpersistent HTTP (cont.)

5. HTTP client receives response

message containing html file,

displays html. Parsing html file,

finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of

10 jpeg objects

4. HTTP server closes TCP

connection.

time

Response time modeling

Definition of RRT: time to send a

small packet to travel from

client to server and back.

Response time:

 one RTT to initiate TCP

connection

 one RTT for HTTP request

and first few bytes of HTTP

response to return

 file transmission time

total = 2RTT+transmit time

time to

transmit

file

initiate TCP

connection

RTT

request

file

RTT

file

received

time time

Persistent HTTP

Nonpersistent HTTP issues:

 requires 2 RTTs per object

 OS must work and allocate host

resources for each TCP connection

 but browsers often open parallel

TCP connections to fetch

referenced objects

Persistent HTTP

 server leaves connection open

after sending response

 subsequent HTTP messages

between same client/server are

sent over connection

Persistent without pipelining:

 client issues new request only

when previous response has

been received

 one RTT for each referenced

object

Persistent with pipelining:

 default in HTTP/1.1

 client sends requests as soon as

it encounters a referenced

object

 as little as one RTT for all the

referenced objects

HTTP request message

 two types of HTTP messages: request, response

 HTTP request message:

 ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

User-agent: Mozilla/4.0

Connection: close

Accept-language:fr

(extra carriage return, line feed)

request line

(GET, POST,

HEAD commands)

header

lines

Carriage return,

line feed

indicates end

of message

HTTP request message

Anatomy of an HTTP GET request

Anatomy of an HTTP GET request
Ch 3 - 18

Anatomy of an HTTP POST request

Anatomy of an HTTP POST request
Ch 3 - 20

HTTP request message: general format

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

User-agent: Mozilla/4.0

Connection: close

Accept-language:fr

(extra carriage return, line feed)

HTTP request message: general format

Now let's look at the header lines in the example. The header line HOST: www.someschool.edu specifies the host on which the

object resides. You night think that this header line is unnecessary, as there is already a TCP connection in place to the host. But,

as we'll see in Section 2.2.6, the information provided by the host header line is required by Web proxy caches. By including

theConnection:close header line, the browser is telling the server that it doesn't want to use persistent connections; it wants the

server to close the connection after sending the requested object. Thus the browser that generated this request message

implements HTTP/1.1 but it doesn't want to bother with persistent connections. The User-agent: header line specifies the user

agent, that is, the browser type that is making the request to the server . Here the user agent is Mozilla/4.0, a Netscape browser.

This header line is useful because the server can actually send different versions of the same object to different types of user

agents. (Each of the versions is addressed by the same URL.) Finally, the Accept-language: header indicates that the user prefers

to receive a French version of the object, if such an object exists on the server; otherwise, the server should send its default

version.

The Entity Body is not used with the GET method, but is used with the POST method. The HTTP client uses the POST method

when the user fills out a form

Method types

HTTP/1.0

 GET

 POST

 HEAD

 asks server to leave

requested object out of

response

HTTP/1.1

 GET, POST, HEAD

 PUT

 uploads file in entity body to

path specified in URL field

 DELETE

 deletes file specified in the

URL field

HTTP response message

HTTP/1.1 200 OK

Connection close

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 …...

Content-Length: 6821

Content-Type: text/html

data data data data data ...

status line

(protocol

status code

status phrase)

header

lines

data, e.g.,

requested

HTML file

HTTP response status codes

200 OK

 request succeeded, requested object later in this message

301 Moved Permanently

 requested object moved, new location specified later in this message

(Location:)

400 Bad Request

 request message not understood by server

404 Not Found

 requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.

A few sample codes:

User-Server Interaction: Authorization and Cookies

 HTTP server is stateless – simplifies server design

 Sometime server needs to identify user

 Two mechanism for identification:

1. Authorization & 2. CooKies

Authorization :

1) Provide username and password to access documents on server

2) Status code 401: Authorization Required

User-server state: cookies

Many major Web sites use

cookies

Four components:

1) cookie header line in the HTTP

response message

2) cookie header line in HTTP

request message

3) cookie file kept on user’s host

and managed by user’s

browser

4) back-end database at Web

site

Example:

 Susan access Internet always

from same PC

 She visits a specific e-

commerce site for first time

 When initial HTTP requests

arrives at site, site creates a

unique ID and creates an

entry in backend database

for ID

Cookies: keeping “state” (cont.)

client server

usual http request msg

usual http response +

Set-cookie: 1678

usual http request msg

cookie: 1678

usual http response msg

usual http request msg

cookie: 1678

usual http response msg

cookie-

specific

action

cookie-

spectific

action

server

creates ID

1678 for user

Cookie file

amazon: 1678

ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678

ebay: 8734

one week later:

Cookies (continued)

What cookies can bring:

 authorization

 shopping carts

 recommendations

 user session state (Web e-

mail)

Cookies and privacy:

 cookies permit sites to learn a lot about you

 you may supply name and e-mail to sites

 search engines use redirection & cookies to

learn yet more

 advertising companies obtain info across sites

aside

Thank you

