Web Engineering

HTTP Protocol

Internet and Web

Theclient’s request contains the
name and address (the URL). of
the thing the client is looking for.

request

response

The server usually has lots of
“content™ that it can send to
clients. That content can be
web pages. JPEGs. and other
resources.

User clicks a link Browser formats the Server finds the
~ in the browser. request and sends it requested page.

e to the server.

User Browser Server

HTML tells the browser how to present the

/ content to the user.
Browser gets the HTML

and renders it into a
display for the user.

Server formats the
response and sends it
to the client (browser).

User Browser

Web and HyperText Transfer Protocol (HTTP)

First some jargon

1 Web page consists of objects

1 Obiject can be HTML file, JPEG image, Java applet, audio
file,...

1 Web page consists of base HTML-file which includes several
referenced objects

1 Each object is addressable by a URL
0 Example URL:

www.someschool.edu/someDept/pic.gif

— ——

host name path name

Could pe i: eq;e;;;i
Protocol: Tells the server tified Pgse, A serviet, an imqge
which communications an yfﬂi :]“ “Slfc, Video, or
protocol (in this case by defy fl f se. index. hem)
HTTP) will be used. = J

7 v \
http:/7www.wickedlysmart.com?80/DV Dadvice/select/DVD.himl
—_— ————————
1 X

Server: The unique name of the
physical server vou're looking for.
This name maps to a unique IP
address. IP addresses are numeric
and take the form “ppp.vvyv.zzz.aaa"”.
You can specify an IP address here
instead of a server name. but a
server name is a lot easier to
remember.

Path: The path to the
location, on the server, of
the resource being
requested.

HTTP overview

HTTP: hypertext transfer

protocol
Web’s application layer protocol PC running Ay
) Explorer /]
client/server model
browser that requests, D
receives, “displays” Web
objects Server

running
Apache Web
server

Web server sends
objects in response to requests

HTTP 1.0: RFC 1945

HTTP 1.1: RFC 2068 Mac running
Navigator

Ports

Well-k TCP port numbers
g s U The TCP port numbers from O
for common server applications
to 1023 are reserved for well-
Telnet MT? known services.

12101

U Don’t use these ports for your

TimC I
ownh custom server programs:

HTTPs pops MTTP

Using one server app per port, a server
can have up to 65536 different server
apps running.

HTTP overview (continued)

Uses TCP: HTTP is “stateless”
client initiates TCP connection server maintains no
(creates socket) to server, port 80 information about past

. client requests
server accepts TCP connection 4

from client

HTTP messages (application-layer Protocols that maintain “state”
protocol messages) exchanged are complex!

between browser (HTTP client) [past history (state) must be
and Web server (HTTP server) maintained

O if server/client crashes, their
views of “state” may be
Inconsistent, must be
reconciled

TCP connection closed

HTTP connections

Nonpersistent HTTP Persistent HTTP
At most one object is sent Multiple objects can be sent
over a TCP connection. over single TCP connection
HTTP /1.0 uses nonpersistent between client and server.
HTTP HTTP /1.1 uses persistent

connections in default mode

Nonpersistent HTTP

Suppose user enters URL

www.someSchool.edu/someDepartment/home. index (contains text,
references to

10
1 a. HTTP client initiates TCP connection jpeg images)

to HTTP server (process) at

www.someSchool.edu on port 8 1b. HTTP server at host "
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying

client
2. HTTP client sends HTTP

(containing

URL) into TCP connection 3. HTTP server receives request
socket. Message indicates tha\‘ message, forms

client wants object containing requested
someDepartment/home.inde}/ object, and sends message into

its socket

Nonpersistent HTTP (cont.)
_

/ 4. HTTP server closes TCP

connection.
5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg obijects

tire
l 6. Steps 1-5 repeated for each of
10 jpeg objects

Response time modeling

Definition of RRT: time to send a
small packet to travel from
client to server and back.

Response time:

one RTT to initiate TCP
connection

one RTT for HTTP request

and first few bytes of HTTP
response to return

file transmission time

total = 2RTT+transmit time

initiate TCP |
connection [

RTT<

request
file

r

~

time to
} transmit
file

RTT-

"

file :
received :

time time

Persistent HTTP

Nonpersistent HTTP issues: Persistent without pipelining:

requires 2 RTTs per object client issues new request only
OS must work and allocate host when previous response has
resources for each TCP connection been received

but browsers often open parallel one RTT for each referenced

TCP connections to fetch object
referenced objects Persistent with pipelining:
Persistent HTTP default in HTTP /1.1
server leaves connection open client sends requests as soon as
after sending response it encounters a referenced
object

subsequent HTTP messages
between same client/server are as little as one RTT for all the
sent over connection referenced objects

HTTP request message

11 two types of HTTP messages: request, response

0 HTTP request message:
ASCII (human-readable format)

request line
(GET, POST,_GET /somedir/page.html HTTP/1.1
HEAD commands) Host: www.someschool.edu
User-agent: Mozilla/4.0
heE_;lder Connection: close
INES | Accept-language: fr

Carriage retu@/(extra carriage return, line feed)

line feed
Indicates end
of message

HTTP request message
—

User clicks
alinktoa) Browser sends an HTTP GET

new page. to the server, asking the
/ﬁ server to GET the page.
[GET D)

i \?"

User Browser Server
POST
User types ina Browser sends an HTTP POST
form and hits the to the server, giving the
Submit button. i server what the user typed

into the form.

llians

POSTLY

User Browser

Anatomy of an HTTP GET request

amt e
, 19 Yo
1..“ 3 &E’;::t‘-: .} a‘-t, 32::“ uiu.-'] a‘.t
nert N

The pat y kot Ve a'rﬁ"‘" w8 The
The HTTP re;mf:t”“f"t frest 72 tth 2 ¢ ;wsﬁ SL fha{FW"’ version

. web by

¥ . Mt'l:hod Wb n ‘Eht Mbﬂ% ‘“B" an i5 ﬂ'ﬂlse‘-

The Rr.ﬂ“ﬁjf' \ime J Jsﬂ""ﬂﬁ “?yﬂud' \L \[h’ﬁ“ﬂ{mﬁ

f_-"_‘-—_-FA'\-——-'_"'\-\ f———-__‘___,p"\h—_——-‘-_l'_"i\
GET /select/. DVDSecarch .jsp?type=movie&language=english HTTP/1.1
Host: www.wickedlysmart.com
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS5 X Mach-0; en-US; rv:1.4) Gecko/
20030624 Netscape/7.1
The Request _ i o _
headers Accept: text/xml,application/xml,application/xhtml+xml, text/html;q=0.9,text/

plain;q=0.8,video/x-mng,image/png,image/jpeg,image/qif;q=0.2,*/*;q=0.1
Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 150-8859-1,utf-8;9=0.7,%;q=0.7

Keep-Alive: 300

Connection: keep-alive

Anatomy of an HTTP GET request

Hey server... GET me the page
on this host that's at /select/

selectBeerTaste.jsp and, oh yeah,
here are the parameters for you:
color = dark & taste = malty. And

Sure, I'll go GET
that page and thanks for
the parameters. And just FYI,
“hurry it up” is not part of

the HT TP protocol.

Client Server

Anatomy of an HTTP POST request

The HTTP n’lg path st the web _
Method on the web{:f" esource B e is vespestng

Ver.
The Reapest e [4 ‘/

POST /advisor/selectBeerTaste.do HTTP/1.1

Host: www.wickedlysmart.com

User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-0O; en-US; rv:1.4) Gecko/
20030624 Netscape/7.1

T
he Request Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/

headers.
plain;q=0.8,video/x-mng,image/png,image/jpeg,image/qgif;q=0.2,*/*;,9=0.1

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1SO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300 This &

N . IS Time,

- Connection: keep-alive in the bod;h::{j: :::t:f.ta;t i::h ﬁ:m
¥ Il

The eSS0t led {tprmﬂvic&1anguag:=cng1ish L// ::Y ihﬁ &'Ir‘e. if You use 3 GET and h:\re

Put Them in the Request lie.

Anatomy of an HTTP POST request

Ch3-20

Hey server... please POST this
to the resource at: /advisor/

selectBeerTaste.do. Don't forget
to look inside the body for the
important data I'm sending.

Sure, T'll find that
resource (it's actually a
little application) and when T

do, T'll give it the data in the

request body you sent.

HTTP request

>

Server

HTTP request message: general format

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language: fr

(extra carriage return, line feed)

F | request
line

header
lines

Entity Body

HTTP request message: general format

quest

‘method |sp| URL |sp| version | cr‘ If | reline

®
° hgader
® lines
B ;

cr| If
Entity Body

Now let's look at the header lines in the example. The header line HOST: www.someschool.edu specifies the host on which the
object resides. You night think that this header line is unnecessary, as there is already a TCP connection in place to the host. But,
as we'll see in Section 2.2.6, the information provided by the host header line is required by Web proxy caches. By including
theConnection:close header line, the browser is telling the server that it doesn't want to use persistent connections; it wants the
server to close the connection after sending the requested object. Thus the browser that generated this request message
implements HTTP/1.1 but it doesn't want to bother with persistent connections. The User-agent. header line specifies the user
agent, that is, the browser type that is making the request to the server . Here the user agent is Mozilla/4.0, a Netscape browser.
This header line is useful because the server can actually send different versions of the same object to different types of user
agents. (Each of the versions is addressed by the same URL.) Finally, the Accept-language: header indicates that the user prefers
to receive a French version of the object, if such an object exists on the server; otherwise, the server should send its default
version.

The Entity Body is not used with the GET method, but is used with the POST method. The HTTP client uses the POST method
when the user fills out a form

Method types

HTTP/1.0
GET
POST
HEAD

asks server to leave

requested object out of
response

HTTP /1.1

GET, POST, HEAD

PUT

uploads file in entity body to
path specified in URL field

DELETE

deletes file specified in the
URL field

HTTP response message

HTTP/1.1 200 OK

Connection close

Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998
Content-Length: 6821
Content-Type: text/html

data data data data data

HTTP response status codes
_

In first line in server->client response message.
A few sample codes:

200 OK
request succeeded, requested object later in this message
301 Moved Permanently

requested object moved, new location specified later in this message
(Location:)

400 Bad Request

request message not understood by server

404 Not Found

requested document not found on this server

505 HTTP Version Not Supported

User-Server Interaction: Authorization and Cookies

HTTP server is stateless — simplifies server design
Sometime server needs to identify user
Two mechanism for identification:

1. Authorization & 2. CooKies

Avuthorization :

1) Provide username and password to access documents on server

2) Status code 401: Authorization Required

User-server state: cookies

Many major Web sites use
cookies

Four components:

1) cookie header line in the HTTP
response message

2) cookie header line in HTTP
request message

3) cookie file kept on user’s host
and managed by user’s
browser

4) back-end database at Web
site

Example:

Susan access Internet always
from same PC

She visits a specific e-
commerce site for first time

When initial HTTP requests
arrives at site, site creates a
unique ID and creates an

entry in backend database
for ID

Cookies: keeping “state” (cont.)

client server

Cookie file usual http request msg
=
usual http response +
ebay: 8734 +< Set-cookie: 1678

Cookie file —1 usual http request msg
amazon: 1678 cookie: 1678 .

ebay: 8734

usual http response msg

one week later:

Cookie file — usual http request msg
amazon: 1678 cookie: 1678 —
SO Gie .| usual http response msg

Cookies (continued)
N

aside
Cookies and privacy:
thﬂ' Cookies can brinq: 0 cookies permit sites to learn a lot about you
- O you may supply name and e-mail to sites
. . 0 search engines use redirection & cookies to
authorization loarm yet more
0 advertising companies obtain info across sites

shopping carts

recommendations

O 0O 0O O

user session state (Web e-
mail)

Thank you

