Convensional Wastewater Treatment

: Grit removal

About 116,000,000 results (0.53 seconds)

Small loose particles of <a>stone or sand

What is grit?

Inert dense material, such as sand, broken glass, metal fragments, silt, and pebbles, is called grit.

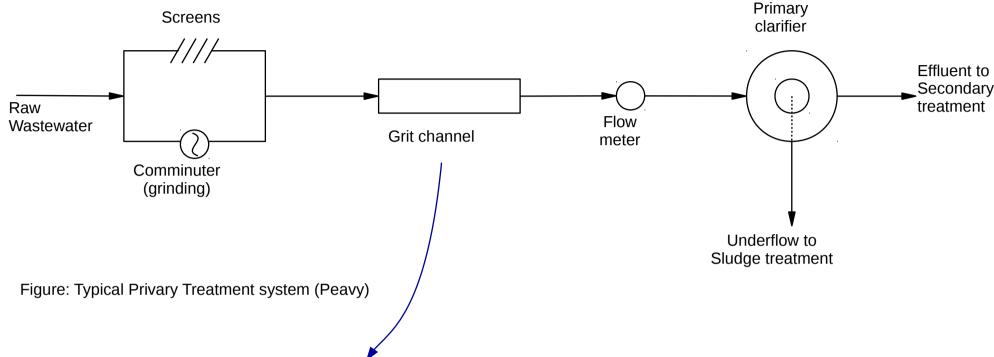
What is the problem with grit?

If these materials are not removed from the wastewater, they abrade pumps and other mechanical devices, causing undue wear.

In addition, they have a tendency to settle in corners and bends, reducing flow capacity and, ultimately, clogging pipes and channels.

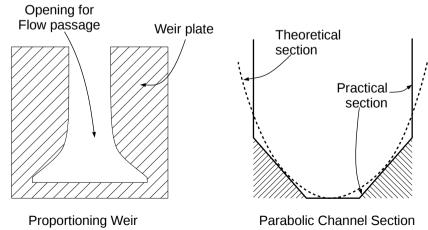
The objective of the Grit Chamber is to remove inorganics, and some larger organics e.g. pebbles, sand, silt, egg shells, glass, metal fragments, bone chips, seeds, coffee and tea grounds.

Why we remove Grits?


- Grits are abrasive in nature and will cause wear on pumps
- Grit deposits in pipes, sumps and clarifiers can absorb grease and solidify.
- They are non-biodegradable and occupy valuable space in the digester

What are the sources of Grits-

- The major contributor is infiltration and depends on the type, age and condition of sewerage systems
- Industrial waste
- Domestic garbage grinders


Position in wastewater treatment

Typical design criteria

- Type I settling (discrete particles)
- Particle diameter = 0.2 mm
- Particle specific gravity = 2.65
- Horizontal flow velocity = 0.3 m/s

Veolocity Control Section of Grit Channel

Types of Grit Removal basins

- Aerated grit chambers
- Vortex-type (paddle or jet-induced vortex) grit removal systems
- Detritus tanks (short-term sedimentation basins)
- Horizontal flow grit chambers (velocity-controlled channel)
- Hydrocyclones (cyclonic inertial separation)

types of grit removal chamber

Videos ■ News

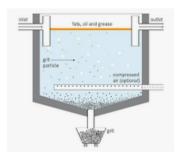
Maps : More Settings Tools ■ Collections SafeSearch ▼

horizontal flow

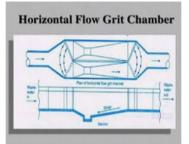
grease trap

vortex grit

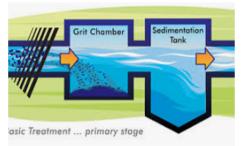
screening

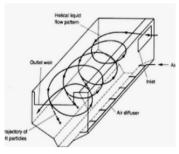

treatment plants

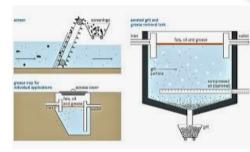
sewage treatment

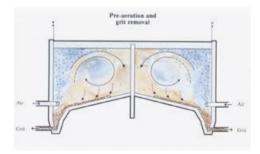

wastewater

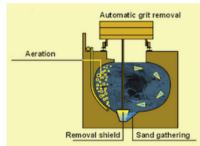
sedimentation

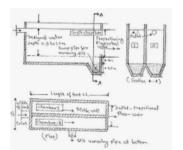

settling velocity


Grit Chamber- Composition, Ty... theconstructor.org


What are Grit chambers | Classi... civildigital.com


AquaNES DSS - Grit Removal dss.aquanes.eu




ILIAS 3 cgi.tu-harburg.de

Pre-Treatment Technologies | SSWM ... sswm.info

Vortex-type grit removal system

Q All

Images

Videos

■ News

Settings Tools

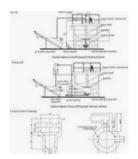
■ Collections SafeSearch ▼

chamber

headcell

aerated grit chambers

hydro international


pista

sewage treatment plant

sgs ce

wastewater treatment

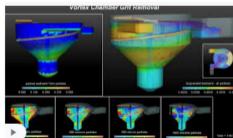
classifier

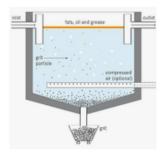
XLC Vortex-type Grit... en.benenv.com

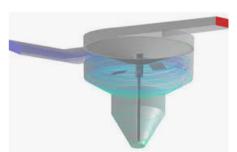
Vortex Grit Removal Syste... jsboeep.en.made-in-china.co...

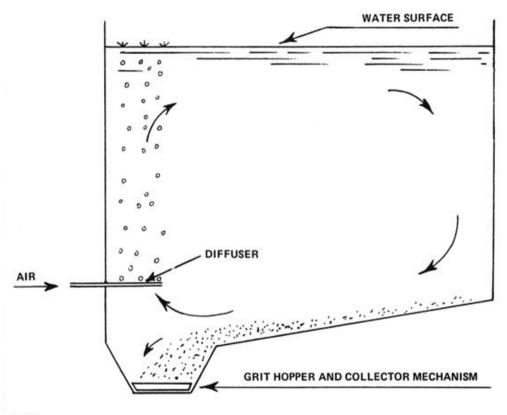
China Wastewater Vortex G... jsboeep.en.made-in-china.com

XLC Vortex-type Grit Removal | Prod... en.benenv.com




Vortex Grit Removal System | Aguas... indiamart.com


China Industrial Wastewat... jsboeep.en.made-in-china.com



Aerated grit chambers

NOTE

Aerated grit chambers often have agitation air systems in the grit hopper to prevent compaction of grit when grit removal is intermittent.

Image source:

https://images.slideplayer.com/19/5731767/slides/slide_5.jpg

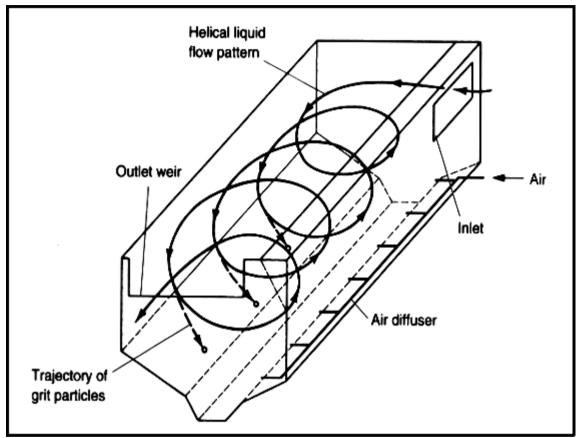


Image source: Crites and Tchobanoglous, 1998

Adapted from

EPA: Wastewater Technology Fact Sheet - Screening and Grit Removal

Vortex type grit chambers

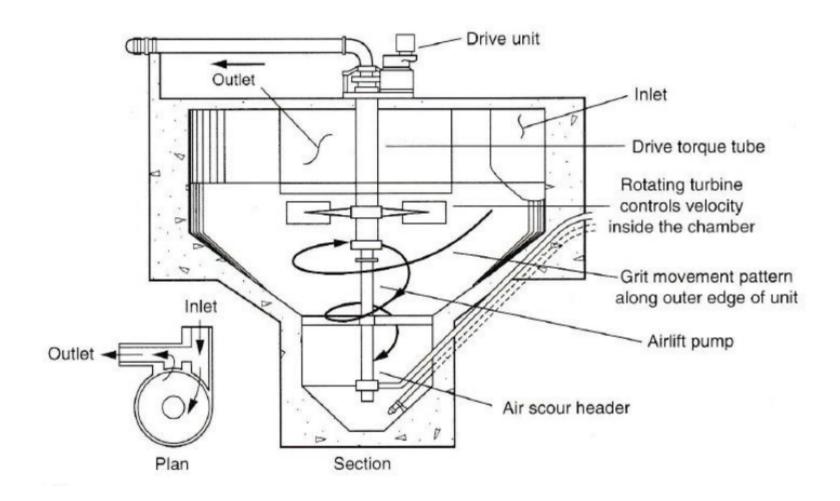


Image Source: https://uomustansiriyah.edu.iq/media/lectures/5/5_2018_10_11!10_33_33_PM.pdf

Vortex type grit chambers

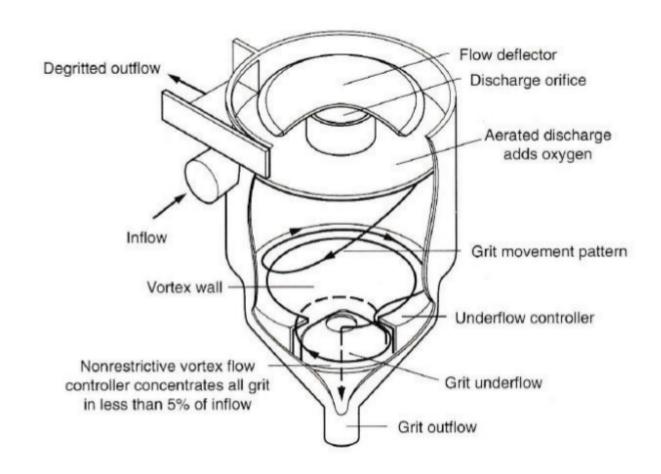


Image Source: https://uomustansiriyah.edu.iq/media/lectures/5/5 2018 10 11!10 33 33 PM.pdf

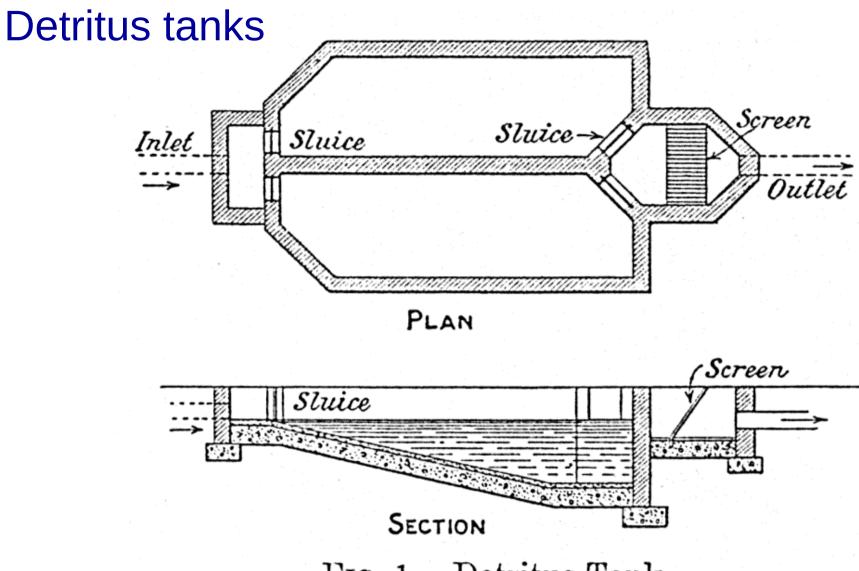
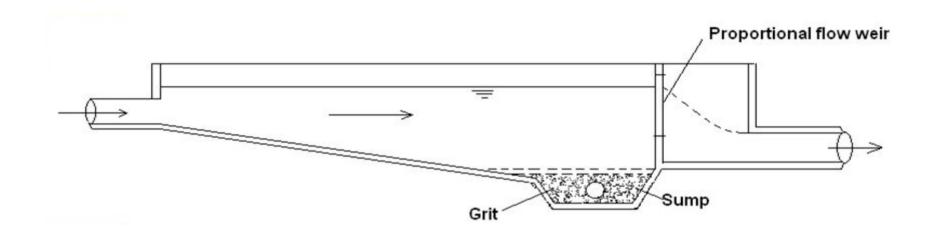
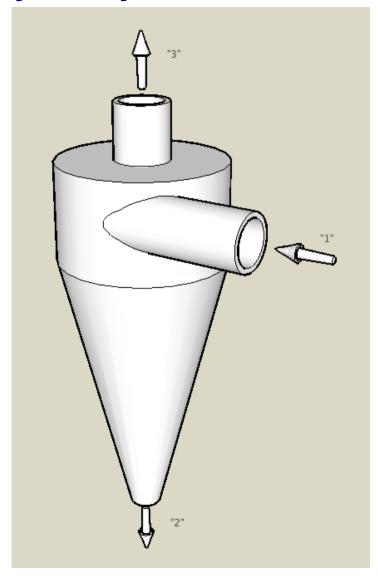
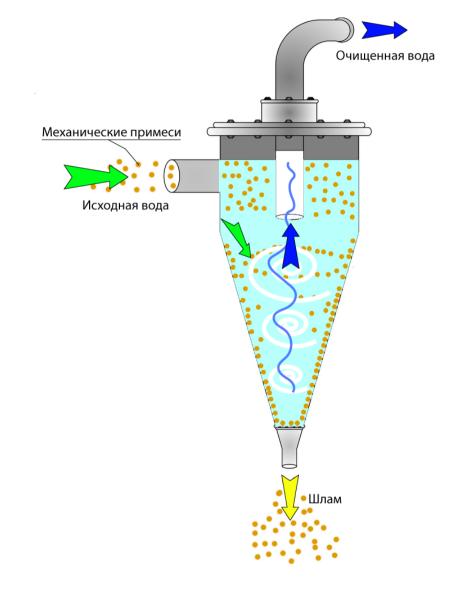



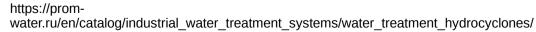
Fig. 1.—Detritus Tank.

Design for detritus (grit) tank, circa 1910. J. T. Brown, W. H. Maxwell, editors, "Sewage Disposal," The Encyclopaedia of Municipal and Sanitary Engineering (New York: D. Van Nostrand Company, 1910), p. 399.



Horizontal flow grit chambers





Hydrocyclones

https://en.wikipedia.org/wiki/Hydrocyclone

Mathematical Problems:

Example 5-1 (Peavy p 222-223)

A grit chamber is designed to remove particles with a diameter of 0.2 mm, specific gravity 2.65. Settling velocity for these particles has been found to range from 0.016 to 0.022 m/s, depending on their shape factor. A flow-through velocity of 0.3 m/s will be maintained by a proportioning weir. Determine the channel dimensions for a maximum wastewater flow of 10,000 m³/d.

Solution:

Formulae we have:

$$Q = A V$$

$$v_s = \frac{g \left(\rho_s - \rho_w\right) d^2}{18 \,\mu}$$

$$v_s = \frac{g(S-1)d^2}{18v}$$

Η

Α

W

Data given:

$$d = 0.2 \text{ mm}$$

$$S = 2.65$$

$$v_s = 0.016 \sim 0.022 \text{ m/s}$$

$$V = 0.3 \text{ m/s}$$

$$Q = 10000 \text{ m}^3/\text{d}$$

Solution:

1. Let,
$$H = 1.5 W$$

 $A = WH = 1.5 W^2$

Q = A V

$$A = \frac{Q}{V} = \frac{10000 \ m^3/d}{0.3 \ m/s} = \frac{10000 \ m^3/d \times \frac{1}{86400 \ s/d}}{0.3 \ m/s}$$

$$= \frac{10000}{86400 \times 0.3} \frac{m^3}{d} \frac{d}{s} \frac{s}{m} = 0.386 \ m^2$$

$$W = \sqrt{\frac{A}{1.5}} = \sqrt{\frac{0.386}{1.5}} = 0.507 \, m$$

$$H = 1.5 \times 0.507 = 0.761 \text{ m}$$

2. Assume, $V_s = 0.02$ m/s

$$t_H = \frac{H}{V_s} = \frac{0.761 \ m}{0.2 \ m/s} = 38 \ s$$

3. Length, $L = V t_H = 0.3 \text{ m/s x } 38 \text{ s} = 11.4 \text{ m}$

Ans. L = 11.4 m, W = 0.507 m, H = 0.761 m

A landmark to create the Future

Mathematical Problems:

Example 5-2 (Davis p 366-367)

Will a grit particle with a radius of 0.10 mm and a specific gravity of 2.65 be collected in a horizontal grit chamber that is 13.5 m in length if the average grit-chamber flow is 0.15 m³/s, the width of the chamber is 0.56 m, and the horizontal velocity is 0.25 m/s? The wastewater temperature is 22°C.

Solution:

Formulae we have:

$$Q = A V$$

$$v_{s} = \frac{g (\rho_{s} - \rho_{w}) d^{2}}{18 \mu}$$

$$V_{s} = \frac{g (S - 1) d^{2}}{18 \nu}$$

$$U_{s} = \frac{g (S - 1) d^{2}}{18 \nu}$$

$$U_{s} = \frac{g (S - 1) d^{2}}{18 \nu}$$

$$U_{s} = 0.25 \text{ m/s}$$

$$v_s = \frac{g (S-1) d^2}{18 v}$$

Η

W

Data given:

$$d = 0.20 \text{ mm}$$

 $S = 2.65$

$$L = 13.5 \text{ m}$$

$$Q = 0.15 \text{ m}^3/\text{s}$$

$$V = 0.25 \text{ m/s}$$

$$V_s = ?$$

$$T = 22^{\circ}C$$

Solution:

$$\frac{x - x_1}{x_1 - x_2} = \frac{y - y_1}{y_1 - y_2}$$

1. For, T = 22°C, $v = 0.959 \times 10^{-6} \text{ m}^2/\text{s}$ $\Rightarrow y = y_1 + (y_1 - y_2) \frac{x - x_1}{x_1 - x_2}$ [from water property table]

$$v_s = \frac{g(S-1) d^2}{18 v}$$

$$= \frac{9.81(2.65-1) \left(\frac{0.2}{1000}\right)^2}{1000}$$

$$\Rightarrow v_{22} = 1.003 + (1.003 - 0.893) \frac{22 - 20}{20 - 25}$$

$$= 0.959$$

$$= \frac{9.81(2.65-1)\left(\frac{0.2}{1000}\right)^2}{18\times0.959\times10^{-6}} = 0.0375 \text{ m/s}$$

2.
$$A = \frac{Q}{V} = \frac{0.15 \, m^3 / s}{0.25 \, m/s} = 0.60 \, m^2$$

$$A = W \times H \Rightarrow H = \frac{A}{W} = \frac{0.060}{0.56} = 1.07 \text{ m}$$

3. Maximum time needed to settle (from surface to bottom)

$$t = \frac{1.07 \ m}{0.0375 \ m/s} = 28.5 \ s$$

4. Time required to travel the whole length (L = 13.5 m)

$$t' = \frac{13.5 \text{ m}}{0.25 \text{ m/s}} = 54 \text{ s} > 28.5 \text{ s}, \text{ the particle settles}$$

Ans. Yes, the particles will be collected in grit chamber.

Necessary Data / Table

Physical properties of Water (SI units)							
Temperatur e °C	Specific weight y kN/m³	Density ρ kg/m³	Modulus of elasticity E/10 ⁶ kN/m ²	Dynamic Viscosity µ × 10 ⁻³ N-s/m ²	Kinematic Viscosity ν × 10 ⁻⁶ m²/s	Surface tension σ N/m	Vapor pressure p _v kN/m²
0	9.805	999.8	1.98	1.781	1.785	0.0765	0.61
5	9.807	1000.0	2.05	1.518	1.519	0.0749	0.87
10	9.804	999.7	2.1	1.307	1.306	0.0742	1.23
15	9.798	999.1	2.15	1.139	1.139	0.0735	1.70
20	9.789	998.2	2.17	1.002	1.003	0.0728	2.34
25	9.777	997.0	2.22	0.890	0.893	0.072	3.17
30	9.764	995.7	2.25	0.798	0.800	0.0712	4.24
40	9.730	992.2	2.28	0.653	0.658	0.0696	7.38
50	9.689	988.0	2.29	0.547	0.553	0.0679	12.33
60	9.642	983.2	2.28	0.466	0.474	0.0662	19.92
70	9.589	977.8	2.25	0.404	0.413	0.0644	31.16
80	9.530	971.8	2.2	0.354	0.364	0.0626	47.34
90	9.466	965.3	2.14	0.315	0.326	0.0608	70.10
100	9.399	958.4	2.07	0.282	0.294	0.0589	101.33

Some web references for further study

https://www.aboutcivil.org/grit-chambers-types

https://en.wikipedia.org/wiki/Hydrocyclone

Use search engines like https://duckduckgo.com/
Or
Google

