Overview of Computer Graphics Topics

- Image Representation
- The RGB Color Model
- Direct Coding
- Lookup Table
- Display Monitor
- Color Display
- Printer
- Halftone
- Halftone Approximation
- Dithering
- Error Diffusion
- Image Files
- Setting the Color Attributes of the Pixel

Raster or Matrix

Image Representation

- A digital image is composed of discrete pixels or picture elements.
- These pixels are arranged in a row-column fashion to form a rectangular picture area, some times referred to a raster.
- Clearly the total number of the pixels in an image is a function of the size of the image and the number of the pixels per unit length (e.g. inch) in the horizontal as well as the vertical direction.
- This number of pixels per unit length is referred to as the resolution of the image.
- Thus a $\mathbf{3} \times 2$ inch image at a resolution of $\mathbf{3 0 0}$ pixels per inch would have a total of $\mathbf{5 4 0 , 0 0 0}$ pixels.

Image Representation

- Frequently image size is given as
- the total number of pixels in the horizontal direction times the total number of pixels in the vertical direction.
- For example,
512×512
640×480
1024×768.
- Although this convention makes it relatively straightforward to gauge the total number of pixels in an image, it does not specify the size of the image or its resolution.
- A 640×480 image would measure $62 / 3$ inches by 5 inches when presented (displayed or printed) at 96 pixels per inch.
- On the other hand, it would measure 1.6 inches by 1.2 inches at 400 pixels per inch.
- The ration of an image's width to its height, measured in unit length or number of pixels, is referred to as its aspect ratio.

Image Representation

- Both a 2×2 inch image and a 512×512 image have an aspect ratio of $1 / 1$, whereas both a $6 \times 4 \frac{1}{2}$ inch image and a 1024×768 image have an aspect ratio of $4 / 3$.
- Individual pixels in an image can be referred by their coordinates.
- Typically the pixel at the lower left corner of an image is considered to be at the origin $(0,0)$ of a pixel coordinate system.
- Thus the pixel at the lower right corner of a 640×480 image would have coordinates ($\mathbf{6 3 9}, 0)$,
- whereas the pixel at the upper right corner would have coordinates (639, 479).
- The task of composing an image on a computer is essentially a matter of setting pixel values.
- The collective effects of the pixels taking on different color attributes give us what we see as a picture.

The RGB Color Model

- Color is a complex, interdisciplinary subject spanning from physics to psychology.
- Here, we only introduce the basics of the most widely used color representation method in computer graphics.
- Figure shows a color coordinate system with three primary colors:
- R (Red),
- G(Green) and
- B(Blue).
- Each primary color can take on an intensity value ranging from $\mathbf{0}$ (off lowest) to 1 (on - highest).
- Mixing these three primary colors at
 different intensity levels produces a variety of colors.

The RGB Color Model

- Color is a complex, interdisciplinary subject spanning from physics to psychology.
- Here, we only introduce the basics of the most widely used color representation method in computer graphics.
- Figure shows a color coordinate system with three primary colors:
- R (Red),
- G(Green) and
- B(Blue).
- Each primary color can take on an intensity value ranging from $\mathbf{0}$ (off lowest) to 1 (on - highest).
- Mixing these three primary colors at different intensity levels produces a variety of colors.

The RGB Color Model

- White = R + G + B
- R = Red
- G = Green
- B = Blue

The RGB Color Model

- In the CMY model, we begin with white and take away the appropriate primary components to yield a desired color.
- For example, if we subtract red from white, what remains consists of green and blue, which is cyan.
- Looking at this from another perspective,
- we can use the amount of cyan, the complementary color of red, to control the amount of red, which is equal to one minus the amount of cyan.
- Figure shows a coordinate system using the three primaries' complementary colors:

Fig. 2-2 The CMY color space. \mathbf{C} (cyan), \mathbf{M} (magenta), and \mathbf{Y} (yellow).

- C = Cyan,
- M = Magenta and
- Y = Yellow
- $\mathbf{C}+\mathrm{M}+\mathrm{Y}=$ Black

The RGB Color Model

-CMY Model

Fig. 2-2 The CMY color spowe.

The RGB Color Model

- The corner of the CMY color cube that is at
- $(0,0,0)$ corresponds to white, whereas
- the corner of the cube that is $(1,1,1)$ represents black
- Black means (no red, no green, no blue).
- The following formula summaries the conversion between the two color models:

Fig. 2-2 The CMY color space.
$\left(\begin{array}{l}\mathrm{R} \\ \mathrm{Q} \\ \mathrm{B}\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}\mathrm{C} \\ \mathrm{M} \\ \mathbf{V}\end{array}\right)$

$$
\left(\begin{array}{c}
\mathrm{C} \\
\mathrm{M} \\
\mathrm{Y}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{l}
\mathrm{B} \\
\mathrm{G} \\
\mathrm{~B}
\end{array}\right)
$$

Direct Coding

- Image representation is essentially the representation of pixel colors.
- Using direct coding we allocate a certain amount of storage space for each pixel to code its color.
- For example, we may allocate 3 bits for each pixel, with one bit for each primary color.
- This 3-bit representation allows each primary to vary independently between two intensity levels:
- 0 (off) or 1 (on).

bit L:	bit ${ }^{\text {a }}$	bit 3 : ${ }^{\text {b }}$	¢0¢0¢
0	4	0	Jack
0	0	1	Hue
0	1	0	pmotil
0	1	1	cran
1	0	0	red
1	0	1	migyers
]	1	4	yellow
I	1	1	white

Fig. 2-3 Direct coding of colors using 3 bits.

Direct Coding

- A widely accepted industry standard uses 3 bytes, or 24 bits, per pixel, with one byte for each primary color.
- This way we allow each primary color to have $\mathbf{2 5 6}$ different intensity levels,
- corresponding to binary values from 00000000 to 11111111.
- Thus a pixel can take on a color from $256 \times 256 \times 256$ or
- 16.7 million possible choices.
- The 24-bit format is commonly referred to as the true color representation, for the difference between two colors that differ by one intensity level in one or more of the primaries is virtually undetectable under normal viewing conditions.
- Hence a more precise representation involving more bits is of little use in terms of perceived color accuracy.

Direct Coding

- A notable special case of direct coding is the representation of
- black-and-white (bilevel) and
- gray-scale images, where the three primaries have the same value and hence need not be coded separately.
- A black-and-white image requires only one bit per pixel, with bit value $\mathbf{0}$ representing black and 1 representing white.
- A gray-scale image is typically coded with $\mathbf{8}$ bits per pixel to allow a total 256 intensity or gray levels.
- Although this direct coding method features simplicity and has supported a variety of applications, we can see a relatively high demand for storage space when it comes to the $\mathbf{2 4}$-bit standard.
- For example, a $\mathbf{1 0 0 0} \mathbf{x} \mathbf{1 0 0 0}$ true color image would take up three million bytes.
- Furthermore, even if every pixel in that image had a different color, there would only be one million colors in the image.
- In many applications the number of colors that appear in any one particular image is much less.
- Therefore the 24-bit representation's ability to have $\mathbf{1 6 . 7}$ million different colors appear simultaneously in a single image seems to be somewhat overkill.

Lookup Table

- Image representation using a lookup table can be viewed as a compromise between our desire to have a lower storage requirement and our need to support a reasonably sufficient number of simultaneous colors.
- In this approach pixel values do not code colors directly.
- Instead, they are addresses or indices into a table of color values.
- The color of a particular pixel is determined by the color value in the table entry that the value of the pixel references.
- Figure shows a lookup table with 256 entries.
- The entries have addresses 0 through 255.
- Each entry contains a 24-bit RGB color value.
- Pixel values are now 1-byte, or 8-bit, quantities.

Lookup Table

- The color of a pixel whose value is i, where $\mathbf{0}<=\mathbf{i}<=\mathbf{2 5 5}$, is determined by
- the color value in the table entry whose address is i.
- This 24-bit 256-entry look up table representation is often referred to as the $\mathbf{8}$-bit format.
- It reduces the storage requirement of a 1000×1000 image to one million bytes plus 768 bytes for the color values in the lookup table.
- It allows 256 simultaneous colors that are chosen from 16.7 million possible colors.
- It is important to remember that,
- using the lookup table representation,
- an image is defined not only by its pixel values but also
- by the color values in the corresponding lookup table.
- Those color values from a color map for the image.

That's All

