Understanding the Confusion Matrix (II)
 Banso D. Wisdom May 5• min read

\#python \#machinelearning \#deeplearning \#ai
In the first part of this article, I talked about the confusion matrix in general, the 2 -class confusion matrix, how to calculate accuracy, precision and other metrics using it and also how to generate a confusion matrix in python.

In this article, we'll be looking at the multi-class confusion matrix.

What is the multi-class confusion matrix?

As the name implies, it is a confusion matrix that deals with multiple classes (i.e. more than 2 classes). Just like the 2 -class confusion matrix, it describes the performance of a multi-class classification model.

For the purpose of this article, we'll be assuming that our multiclass classification model is one that classifies images of dogs into the following breeds: Greyhound, Mastiff and Samoyed.

A confusion matrix for this classifier can be visualized as such:

		Predicted		
		Greyhound	Mastiff	Samoyed
Actual	Greyhound	P_{GG}	Pmg	PsG
	Mastiff	$\mathrm{P}_{\text {Gm }}$	Рмм	Psm
	Samoyed	PGs	Pms	Pss

In this visualization, we have two sections which have been outlined. We have the predicted classifications section which contains three subsections for each of the classes we want to classify into and the actual classifications section which has three subsections for each of the classes.

Having visualized this confusion matrix, we can use this visualization to calculate the following metrics:

- True Positives.
- True Negatives.
- False Positives.
- False Negatives.
- Accuracy.
- Precision.
- True Positive Rate is also known as Sensitivity or Recall.
- True Negative Rate is also known as Specificity.

Before we calculate these metrics, let's define the variables in the visualization:

PGG

This variable represents the number of predictions where images of a Greyhound were correctly classified [as a Greyhound]. This is also the True Positive for the Greyhound class.

PMG

This variable represents the number of predictions where images of a Greyhound were incorrectly classified as a Mastiff.

PSG

This variable represents the number of predictions where images of a Greyhound were incorrectly classified as a Samoyed.

PGM

This variable represents the number of predictions where images of a Mastiff were incorrectly classified as a Greyhound.

PMM

This variable represents the number of predictions where images of a Mastiff were correctly classified [as a Mastiff]. This is also the True Positive for the Mastiff class.

PSM

This variable represents the number of predictions where images of a Mastiff were incorrectly classified as a Samoyed.

PGS

This variable represents the number of predictions where images of a Samoyed were incorrectly classified as a Greyhound.

PMS

This variable represents the number of predictions where images of a Samoyed were incorrectly classified as a Mastiff.

PSS

This variable represents the number of predictions where images of a Samoyed were correctly classified [as a Samoyed]. This is also the True Positive for the Samoyed class.

Now that we have defined these variables, we can now calculate the aforementioned metrics.

True Positives

The definition for the True Positive is the same as in the 2-class confusion matrix. However, here we calculate the True Positives for each class in the confusion matrix unlike the general or absolute True Positives in the 2-class confusion matrix.

The True Positives is the number of predictions where data labelled to belong to a particular class was correctly classified as the said class. E.g Number of predictions where images of a Samoyed was correctly classified as a Samoyed.

From the definition of the matrix variables, we have already identified the True Positives for each of the classes:

True Positives for the Greyhound class is the variable PGG in the confusion matrix.

True Positives for the Mastiff class is the variable PMM in the confusion matrix.

True Positives for the Samoyed class is the variable PSS in the confusion matrix.

True Negatives

The definition of the True Negative is the same as in the 2-class confusion matrix. Here we calculate the True Negatives for each class in the confusion matrix unlike the general or absolute True Negatives in the 2-class confusion matrix.

The True Negatives for a particular class is calculated by taking the sum of the values in every row and column except the row and column of the class we're trying to find the True Negatives for.

For example, calculating the True Negatives for the Greyhound class:

		Predicted		
		Greyhound	Mastiff	Samoyed
Actual	Greyhound			
	Mastiff		Рмм	Psm
	Samoyed		Pms	Pss

We omit the row and columns belonging to the Greyhound class and sum the variables that are left, which are the rows and columns of the other classes (Mastiff and Samoyed).

Therefore the True Negatives for the Greyhound class is:

TN $=\mathbf{P M M}+\mathbf{P S M}+\mathbf{P M S}+\mathbf{P S S}$

Similarly, we can calculate the True Negatives for the other classes.

Calculating the True Negatives for the Mastiff class:

		Predicted		
		Greyhound	Mastiff	Samoyed
Actual	Greyhound	PGG		Psg
	Mastiff			
	Samoyed	$\mathrm{P}_{\text {gis }}$		Pss

The True Negatives for the Mastiff class is:

TN $=$ PGG + PSG + PGS + PSS

Calculating the True Negatives for the Samoyed class:

		Predicted		
		Greyhound	Mastiff	Samoyed
Actual	Greyhound	P_{GG}	Pmg	
	Mastiff	Pgm	Рмм	
	Samoyed			

The True Negatives for the Samoyed class is:

TN $=$ PGG + PMG + PGM + PMM

False Positives

The definition of the False Positive is the same as in the 2-class confusion matrix. Here we calculate the False Positives for each class in the confusion matrix unlike the general or absolute False Positives in the 2-class confusion matrix.

The False Positives for a particular class can be calculated by taking the sum of all the values in the column corresponding to that class except the True Positives value.

For example, calculating the False Positives for the Greyhound class:

		Predicted		
		Greyhound	Mastiff	Samoyed
Actual	Greyhound	PGG	Pmg	Psg
	Mastiff	$\mathrm{P}_{\text {gim }}$	Рмм $^{\text {m }}$	Psm
	Samoyed	Pgis	Pms	Pss

We sum all the values in the highlighted area, which is the column corresponding to the Greyhound class with the
exception of the variable PGG which we had earlier identified to be the True Positives for the Greyhound class.

Therefore the False Positives for Greyhound class is:

FP $=\mathbf{P G M}+\mathbf{P G S}$

Similarly, we can calculate the False Positives for the other classes.

Calculating the False Positives for the Mastiff class:

		Predicted		
		Greyhound	Mastiff	Samoyed
Actual	Greyhound	PGG	Pmg	PsG
	Mastiff	$\mathrm{PGMm}^{\text {g }}$	Рмм	Psm
	Samoyed	$\mathrm{P}_{\text {GS }}$	Pms	Pss

The False Positives for the Mastiff class is:

FP $=\mathbf{P M G}+\mathbf{P M S}$

Calculating the False Positives for the Samoyed class:

		Predicted		
		Greyhound	Mastiff	Samoyed
Actual	Greyhound	PGG	Pmg	Psg
	Mastiff	PGm	Рмм	Psm
	Samoyed	PGs	Pms	Pss

The False Positives for the Samoyed class is:

FP $=\mathbf{P S G}+\mathbf{P S M}$

False Negatives

The definition of the False Negative is the same as in the 2-class confusion matrix. Here we calculate the False Negatives for each class in the confusion matrix unlike the general or absolute False Positives in the 2-class confusion matrix.

The False Negatives for a particular class can be calculated by taking the sum of all the values in the row corresponding to that class except the True Positives value.

For example, calculating the False Negatives for the Greyhound class:

		Predicted		
		Greyhound	Mastiff	Samoyed
Actual	Greyhound	PGG	PMg	PsG
	Mastiff	$\mathrm{P}_{\text {gm }}$	Рмм	Psm
	Samoyed	PGs	Pms	Pss

We sum all the values in the highlighted area, which is the row corresponding to the Greyhound class with the exception of the variable PGG which we had earlier identified to be the True Positives for the Greyhound class.

Therefore the False Negatives for Greyhound class is:

FN $=\mathbf{P M G}+\mathbf{P S G}$

Similarly, we can calculate the False Negatives for the other classes.

Calculating the False Negatives for the Mastiff class:

		Predicted		
		Greyhound	Mastiff	Samoyed
Actual	Greyhound	PGG	Pmg	Psg
	Mastiff	PGim	Рмм $^{\text {m }}$	Psm
	Samoyed	PGis	Рмм	Pss

The False Negatives for the Mastiff class is:

FN $=\mathbf{P G M}+\mathbf{P S M}$

Calculating the False Negatives for the Samoyed class:

		Predicted		
		Greyhound	Mastiff	Samoyed
Actual	Greyhound	Pgg	Рмя	Psg
	Mastiff	Pgm	Рмм	Psm
	Samoyed	Pfis	Pms	Pss

The False Negatives for the Samoyed class is:

FN = PGS + PMS

Accuracy

Accuracy is calculated as the ratio of the number of correct classifications to the total number of classifications. From our confusion matrix, the correct classifications are the True Positives for each class and the total number of classifications is the sum of every value in the confusion matrix, including the True Positives.

Therefore, the accuracy is:

$$
\begin{aligned}
& \mathrm{AC}=(\mathrm{PGG}+\mathrm{PMM}+\mathrm{PSS}) /(\mathrm{PGG}+\mathrm{PMG}+\mathrm{PSG}+\mathrm{PGM}+ \\
& \mathrm{PMM}+\mathrm{PSM}+\mathrm{PGS}+\mathrm{PMS}+\mathrm{PSS})
\end{aligned}
$$

Precision

Precision is a multi-class confusion matrix is the measure of the accuracy relative to the prediction of a specific class. It is calculated as the ratio of the True Positives of the class in question to the sum of its True Positives and False Positives.

For example, calculating the Precision of the Greyhound class:

$$
\begin{aligned}
& \text { Precision }(\mathbf{G})=\mathbf{T P} /(\mathbf{T P}+\mathbf{F P}) \\
& =\text { PGG } /(\mathbf{P G G}+(\mathbf{P G M}+\mathbf{P G S}))
\end{aligned}
$$

Similarly, we can calculate the Precision of other classes.

Calculating the Precision of the Mastiff class:

$$
\begin{aligned}
& \text { Precision (M) = TP / (TP + FP) } \\
& =\text { PMM / (PMM + (PMG + PMS }) \text {) }
\end{aligned}
$$

Calculating the Precision of the Samoyed class:

$$
\begin{aligned}
& \text { Precision (S) = TP / (TP + FP) } \\
& =\text { PSS } /(\text { PSS + (PSG + PSM }) \text {) }
\end{aligned}
$$

True Positive Rate

The True Positive Rate (also known as Recall or Sensitivity) is calculated as the ratio of the True Positives of a specific class to the sum of its True Positives and False Negatives.

For example, calculating the True Positive Rate of the Greyhound class:

```
TPR (G) = TP / (TP + FN \()\)
= PGG / (PGG + (PMG + PSG))
```

Similarly, we can calculate the True Positive Rate of other classes.

Calculating the True Positive Rate of the Mastiff class:
$\operatorname{TPR}(M)=T P /(T P+F N)$
$=\mathbf{P M M} /(\mathbf{P M M}+(\mathbf{P G M}+\mathbf{P S M}))$

Calculating the True Positive Rate of the Samoyed class:

TPR (S) = TP $/(\mathbf{T P}+\mathbf{F N})$
$=\mathbf{P S S} /(\mathbf{P S S}+($ PGS $+\mathbf{P M S}))$

True Negative Rate

The True Negative Rate (also known as Specificity) is calculated as the ratio of the True Negatives of a specific class to the sum of its True Negatives and False Positives.

For example, calculating the True Negative Rate of the Greyhound class:

$$
\begin{aligned}
& \text { TNR }(\mathbf{G})=\mathbf{T N} /(\mathbf{T N}+\mathbf{F P}) \\
& =(\mathbf{P M M}+\mathbf{P S M}+\mathbf{P M S}+\mathbf{P S S}) /((\mathbf{P M M}+\mathbf{P S M}+\mathbf{P M S}+\mathbf{P S S})+ \\
& (\mathbf{P G M}+\mathbf{P G S}))
\end{aligned}
$$

Similarly, we can calculate the True Negative Rate of other classes.

Calculating the True Negative Rate of the Mastiff class:

TNR (M) $=\mathbf{T N} /(\mathbf{T N}+\mathbf{F P})$
$=($ PGG + PSG + PGS + PSS $) /(($ PGG + PSG + PGS + PSS $)+$ (PMG + PMS))

Calculating the True Negative Rate of the Samoyed class:

TNR (S) = TN / (TN + FP)
$=(\mathbf{P G G}+\mathbf{P M G}+\mathbf{P G M}+\mathbf{P M M}) /((\mathbf{P G G}+\mathbf{P M G}+\mathbf{P G M}+$ PMM) $+($ PSG $+\mathbf{P S M}))$

Phewww, that was a lot.

Now, a quick example

Suppose we have the image below as the visualized confusion matrix for our classifier, we can use the information in the visualization and the metrics defined above to evaluate its performance.

Predicted

	Greyhound	Mastiff	Samoyed
Greyhound	250	25	18
Mastiff	21	320	24
Samoyed	22	12	180

From this confusion matrix, we can identify that:

- The variable PGG and the True Positives of the Greyhound class is $\mathbf{2 5 0}$.
- The variable PMM and the True Positives of the Mastiff class is 320.
- The variable PSS and the True Positives of the Samoyed class is $\mathbf{1 8 0}$.
- The variable PMG is $\mathbf{2 5}$.
- The variable PSG is $\mathbf{1 8}$.
- The variable PGM is 21.
- The variable $\mathbf{P S M}$ is $\mathbf{2 4}$.
- The variable PGS is 22.
- The variable PMS is $\mathbf{1 2}$.

Using this information that we've "extracted", we can calculate the metrics mentioned earlier and thus evaluate the performance of the classifier.

True Negatives

- $\mathbf{T N}($ Greyhound $)=$ PMM + PSM + PMS + PSS $=320+$ $24+24+180=548$
- TN (Mastiff) = PGG + PSG + PGS + PSS = $250+18+$ $22+180=470$
- TN (Samoyed) = PGG + PMG + PGM + PMM = 250 + $25+21+320=616$

False Positives

- FP (Greyhound) = PGM + PGS = 21 + $22=43$
- FP $($ Mastiff $)=\mathbf{P M G}+\mathbf{P M S}=25+12=37$
- FP $($ Samoyed $)=$ PSG + PSM $=18+24=42$

False Negatives

- $\mathbf{F N}($ Greyhound $)=\mathbf{P M G}+\mathbf{P S G}=25+18=43$
- FN (Mastiff) $=\mathbf{P G M}+\mathbf{P S M}=21+24=45$
- FN $($ Samoyed $)=$ PGS + PMS $=22+12=34$

True Positive Rate / Recall / Sensitivity

- $\operatorname{TPR}($ Greyhound $)=\mathbf{T P} /(\mathbf{T P}+\mathbf{F N})=250 /(250+43)=$ $250 / 293=0.8532423208=\mathbf{0 . 8 5}$
- $\mathbf{T P R}($ Mastiff $)=\mathbf{T P} /(\mathbf{T P}+\mathbf{F N})=320 /(320+45)=320$ / $365=0.8767123288=\mathbf{0 . 8 8}$
- $\operatorname{TPR}($ Samoyed $)=\mathbf{T P} /(\mathbf{T P}+\mathbf{F N})=180 /(180+34)=$ $180 / 214=0.8411214953=\mathbf{0 . 8 1}$

True Negative Rate / Specificity

- $\operatorname{TNR}($ Greyhound $)=\mathbf{T N} /(\mathbf{T N}+\mathbf{F P})=548 /(548+43)$ $=548 / 591=0.9272419628=0.93$
- $\mathbf{T N R}$ (Mastiff) $=\mathbf{T N} /(\mathbf{T N}+\mathbf{F P})=470 /(470+37)=$ $470 / 507=0.9270216963=\mathbf{0 . 9 3}$
- TNR (Samoyed) = TN / (TN + FP) = $616 /(616+42)=$ $616 / 658=0.9361702128=\mathbf{0 . 9 4}$

Precision

- Precision $($ Greyhound $)=$ TP $/($ TP + FP $)=250 /(250+$ $43)=250 / 293=0.8532423208=\mathbf{0 . 8 5}$

Therefore, the classifier has a precision of 0.85 , which is 85%, in classifying images of Greyhounds.

- Precision (Mastiff) $=$ TP $/(\mathbf{T P}+\mathbf{F P})=320+(320+37)$

$$
=320 / 357=0.8963585434=\mathbf{0 . 9 0}
$$

Therefore, the classifier has a precision of $\mathbf{0 . 9 0}$, which is $\mathbf{9 0 \%}$, in classifying images of Mastiffs.

- Precision (Samoyed) = TP / (TP + FP) = $180 /(180+42)$

$$
=180 / 222=0.8108108108=\mathbf{0 . 8 1}
$$

Therefore, the classifier has a precision of $\mathbf{0 . 8 1}$, which is $\mathbf{8 1 \%}$, in classifying images of Samoyeds.

Accuracy

$$
\begin{aligned}
& \mathbf{A C}=(\mathbf{P G G}+\mathbf{P M M}+\mathbf{P S S}) /(\mathbf{P G G}+\mathbf{P M G}+\mathbf{P S G}+\mathbf{P G M}+ \\
& \mathbf{P M M}+\mathbf{P S M}+\mathbf{P G S}+\mathbf{P M S}+\mathbf{P S S}) \\
& =(250+320+180) /(250+25+18+21+320+24+22+12+180) \\
& =750 / 872 \\
& =0.8600917431 \\
& =\mathbf{0 . 8 6}
\end{aligned}
$$

Therefore, the classifier has a total accuracy of 0.86 which is 86\%

How to generate a multi-class confusion matrix in Python

A multi-class confusion matrix is created in the same way as a 2-class confusion matrix. See the first part of this article.

dev.to now has dark mode.
Select night theme in the "misc"
section of your settings

Banso D. Wisdom +folow

software ng-neer
@overrideveloper overrideveloper Overrideveloper

Add to the discussion

Progress Not Perfection

Ilona Codes

Most people want to make things perfect. Sometimes we evaluate the complexity of an upcoming goal or a problem. So, the fear to not complete it perfectly or "wrong" (Yeah, who are judges? ?
(a) $133 \backsim 7$

Another Post You Might Like

On Becoming a Technical Writer

4 Ada Nduka Oyom

One of my many role models once said, the reason as to which she started out ...

Another Post You Might Like

Play With the React Router

how routing works in react router
(a) $106 』 4$

Making own wordbook by Natural language processing

8pockets - Nov 22

Segment Tree

Artur Curinga - Nov 22

Python to React
SMAmmar - Nov 23

Neural Network, the universal solver?
EdRome - Nov 20
Home About Privacy Policy Terms of Use Contact Code of Conduct
DEV Community copyright 2016-2019

