The Processor Status and the FLAGS Registers

REFERENCES:
ASSEMBLY LANGUAGE
PROGRAMMING AND ORGANIZATION OF THE IBM PC - CHARLES MARUT
CHAPTER 5

Flag Registers of 8086 (Bit-wise Positions)

The FLAGS

Register

- Carry Flag (CF) : CF = 1 if there is a carry out from the most significant bit (msb) on addition, or there Is a borrow into the msb on subtraction; otherwise, it is 0 . CF is also affected by shift and rotate Instructions.
- Parity Flag (PF) : PF = 1 if the low byte of a result has an even number of one bits (even parity). It is O if the low byte has, odd parity. For example, if the result of a word addition is FFFEh, then the low byte contains 7 one bits, so $\mathrm{PF}=0$.
- Auxiliary Carry Flag (AF) : AF = 1 if there is a carry out from bit 3 on addition, or a borrow into bit 3 on subtraction.

The FLAGS Register

- Sign Flag (SF) : SF = 1 if the msb of a result is 1 ; it means the result is negative if you are giving a signed interpretation. $\mathrm{SF}=0$ if the msb is 0 .
- Overflow Flag (OF) : OF = I if signed overflow occurred, othcrwise it is 0 .
- Zero Flag (ZF) : ZF = 1 for a zero result, and ZF = 0 for a nonzero result.

Overflow

- Signed and unsigned overflows are independent phenomena. When we perform an arithmetic operation such as addition, there are four possible outcomes:
(1) no overflow,
(2) signed overflow only,
(3) unsigned overflow only, and
(4) both signed and unsigned overflows.

Unsigned Overflow

- As an example of unsigned overflow but not signed overflow, suppose AX contains FFFFh, BX contains 0001 h, and $A D D A X, B X$ is executed. The binary result is-

$$
\begin{array}{r}
1111111111111111 \\
+\quad 0000000000000001 \\
\hline 10000000000000000
\end{array}
$$

- If we are giving an unsigned interpretation, the correct ans is 10000h $=65536$, but this is out of range for a word operation. A 1 is carried out of the msb and the answer stored in AX, OOOOh, is wrong, so unsigned overflow occurred. But the stored answer is correct as a signed number, for FFFFh $=-1.0001 \mathrm{~h}=1$, and FFFFh $+0001 \mathrm{~h}=-1+1=0$, so signed overflow did not occur.

Signed Overflow

- As an example of signed but not unsigned overflow, suppose $A X$ and $B X$ both contain 7FFFh, and we execute $A D D A X, B X$. The binary result is

$$
\begin{aligned}
& 0111111111111111 \\
& +\quad 011111111111111 \\
& \hline 1111111111111110
\end{aligned}=F F H E H
$$

- The signed and unsigned decimal interpretation of 7FFFh is 32767. Thus for both signed and unsigned addition, 7FFFh +7 FFFh $=32767+32767=65534$.
- This is out of range for signed numbers; the signed interpretation of the stored answer FFFEh is 2 . so signed overflow occurred. However, the unsigned interpretation of FFFEh is 65534, which is the right answer, so there no unsigned overflow.

Unsigned Overflow

- On addition, unsigned overflow occurs when there Is a carry out of the msb. This means that the correct answer is larger than the biggest unsigned number; that is, FFFFh for a word and FFh for a byte.
- on subtraction, unsigned overflow occurs when there is a borrow into the msb. This means that the correct answer is smaller than 0 .

Signed Overflow

- On addition of numbers with the same sign, signed overflow occurs when the sum has a different sign. This happened in the preceding example when we were adding 7FFFh. and 7FFFh (two positive numbers), but got FFFEh (a negative result).
- Subtraction of numbers with different signs is like adding numbers of the same sign. For example, A-($B)=A+B$ and $-A-(+B)=-A+-B$. Signed overflow occurs if the result has a different sign than expected.

Signed Overflow

- In addition of numbers with different signs, overflow is impossible, because a sum like $A+(-B)$ is really $A-B$, and because A and B are small enough to fit in the destination, so is A - B. For exactly the same reason, subtraction of numbers with the' same sign cannot give overflow.
- Actually, the processor. uses the following method to set the OF: If the carries into and out of the msb don't match-that is, there is a carry into the msb but no carry out, -or if there is a carry out but no carry in-then signed overflow has occurred, and OF is set to 1.

How Instructions Effect the Flags

Instruction
$\mathrm{MOV} / \mathrm{XCHG}$
ADD/SUB
INC/DEC
NEG

Affects flags
none
all
all except CF
all $\langle C F=1$ unless result is 0 . OF $=1$ if word soerand is 8000 h , or byte operand is 80h)

Examples

Example 5.1 ADD $A X B X$, where $A X$ contains $P F F_{F i n} B X$ contains FFFFh.

Solution:

$$
\begin{array}{r}
H F F h \\
+1 F H h
\end{array}
$$

The result stored In $A X$ is IFFEh $=11111111: 1111 \mathrm{llt}$.
$\mathrm{SF}=1$ because the msb is 1 .
$P F=0$ because there are 7 (odd number) of 1 bits in the low byte of the result.
$7 \mathrm{~F}=0$ because the tesult is nonzers.
$C F=1$ because there is a carry out of the unsb on addition.
$\mathrm{OF}=0$ Wecause the sign of the stored result is the same as that of the nunbers being added (as a binary addition, there is a carry into the msb and also a carry out).

Examples

Example 5.2 ADD AL,BL, where AL contains 80h, BL, contains 80h.

Solution:

$$
\begin{array}{r}
80 \mathrm{~h} \\
+80 \mathrm{~h} . \\
\hline 100 \mathrm{~h}
\end{array}
$$

The result stored in Al . is 00 h .
$\mathrm{SF}=0$ because the msb is 0 .
$P F=1$ because all the bits in the result are 0 .
$Z F=1$ because the result is 0 .
$\mathrm{CF}=1$ because there is a carry out of the msb on addition.
$\mathrm{OF}=1$ because the numbers being added are both negative, but the result is 0 (as a binary addition, there is no carry into the msb but there is a carry out).

Examples

Example 5.3 SUB $A X, B X$, where $A X$ contains $8000 h$ and $B X$ contains 0001h.

Solution: 8000h
$-0001 \mathrm{~h}$

$$
\overline{\mathrm{7FFFh}}=0111111111111111
$$

The result stored in AX is 7FFFh.
$\mathrm{SF}=0$ because the msb is 0 .
$\mathrm{PF}=1$ because there are 8 (even number) one bits in the low byte of the result.
$\mathbf{Z F}=0$ because the result is nonzero.
$C F=0$ because a smaller unsigned number is being subtracted from a larger one.
Now for OF. In a signed sense, we are subtracting a positive number from a negative one, which is like adding two negatives. Because the result is positive (the wrong sign), $O F=1$.

Examples

Example 5.4 INC AI., where AL contains FFh.

Solution:

$$
\begin{array}{r}
\mathrm{Fhh} \\
+\quad 1 \mathrm{~h} \\
\hline 100 \mathrm{~h}
\end{array}
$$

The result stored in AL is $00 \mathrm{~h} . \mathrm{SF}=0, \mathrm{PF}=1, \mathrm{ZF}=1$. Even though there is a carry out, CF is unaffected by INC. This means that if CF $=0$ before the execution of the instruction, CF will still be 0 afterward.
$\mathrm{OF}=0$ because numbers of unlike sign are being added (there is a carry into the msb and also a carry out).

Example 5.5 MOV AX, -5

Solution: The result stored in $A X$ is $\mathbf{- 5}=\mathrm{FHFBh}$.

None of the flags are affected by MOV.

Do Exercise

Exercises

1. For each of the following instructions, give the new destination contents and the new settings of CF, SF, ZF, PF, and OF. Suppose that the flags are initially 0 in each part of this question.
a. ADD $A X, B X$ where $A X$ contains 7FFFh and $B X$ contains 0001h
b. SUB AL, BL where AL contains OIh and BL contains FFh
c. DEC AL where AL contains ooh
d. NEG AL where Al contains 7Fh
e. XCHG AX, BX where AX contains 1ABCh and BX contains 712Ah
f. ADD AL, BL where AL contains $80 h$ and $B L$ contains FFh
g. SUB $A X, B X$ where $A X$ contains 0000 h and $B X$ contans 8000h
h. NEG 'AX where $A X$ contains 0001 h
