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T-Line Theory

T-Lines are used In countless
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Why T-Linese-|

Consider two ICs being connected by conducting traces on PCB.

UQU

When the voltage at 1
changes state, does that
new voltage appear at 2

Instantaneously ?

If these two pomts are separated by a large electrical distance, there will be a
propagation delay as the change in state (electrical signal) travels to 2. =

Not an instantaneous effect!!
This propagation of voltage signals is modeled as a

We will see that
Fantastic.



T-Line Theory

« Lumped circuits: resistors, capacitors, inductors
Neglects time delays (phase change)

 Distributed circuit elements:  T-lines
Account for propagation and time delays (phase change)

Simple connection

Wavelength

T-Line

We need T-line theory whenever the length of a line is
significant compared to a wavelength.



TEM T-Lines

 All true TLs share one common characteristic: the E and H fields are all L the
direction of propagation.

* These are called for ransverse lectricand agnetic fields.
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T-Line Model (RLGC Model)

* Thereis In the two conductors and a
between these two conductors where the electric field E is varying with time.

« Conduction current impedance effects:
[Q1/m], series resistance due to losses in the conductors,

[H/m], series inductance dueto the currentflow in the conductors
and the magnetic flux linking the current path.

 Displacement current impedance effects:

[S/m], shunt conductance dueto losses in the dielectric
between the conductors,

[F/m], shunt capacitance dueto the time varying electric
field between the two conductors.

Note: R" and G', represent loss.



Generic equivalent
circuit model



A 4 nsec, 80 O, lumped element T-Line
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Analysis of T-Lines

On a T-Line, the
= they are expressed as
i(z,t), and v(z, t), respectively

How do we solve for v(z, t) and i(z,t)?

We first need to develop the for
the voltage and current, and then solve these equations.




T-Line Equations-|

Node A

loop

Z
A2

E« Todevelop the governing equation for v(z, t), apply

Ex Similarly, for the current i(z, t) apply at the node A:



T-Line Equations-ll
E« Divide (1a) and (1b) by Az:

In the limit as Az — 0, the term on the LHS In (2) and (3) Is the
. Hence,

Ex Egs. (4) and (5) are called the or
the



T-Line Wave Equations-|

B Now combine (4) and (5) to form two equations, each a

Switch the
order of the

2 Todo this, take a@ of Eq. (4) . derivatives.

2 Substituting from Eg. (5)

@ The same equation also holds for i.



T-Line Wave Equations-ll

B Time-Harmonic Waves:

Convention: small letter for time-domain
form, capital letter for phasor.

= Note that

B Then we can write

Where

IS the complex propagation constant, which is a function of frequency.
a = 0 Is the attenuation constant and 8 = 0 is the phase constant.



Voltage Wave Equation Solutions

2 The voltage wave equation has solution in the form

where ¢* is the phase angle of the complex voltage V}

@ travelling wave (a wave traveling in the +z direction):

(2 Converting back to the time domain



Voltage Wave Equation Solutions

2 travelling wave (a wave traveling in the —z direction):

Z Converting back to the time domain

where ¢~ Is the phase angle of the complex voltage V',
2 Complete time domain solution:




Attenuation Constant (a)

& decreases the amplitude of
the voltage and current wave along the T-Line.

& For +ve traveling wave:

&2 For —ve traveling wave:




Wavelength (1)

Ex - the distance between two successive maxima
(or minima, or any other reference points) on the wave at a fixed
Instant of time.

Es Thus,

K, The wave “repeats” when:

E, Hence:



Phase Velocity (v,)

B Phase velocity v,,: velocity at which a fixed phase point on the wave
travels.

| m—
= Consider one part of the wave —
(2 calculation

& Hence



Wave Motion

Let v, =1 m/s

, focus on the peak located at z=1.5m

Z 1.5
— S+=t_vp =1- 1 =-0.5
The argument S, stays constant for varying t & z = , for example:
S, = —0.5= t—va SEEE RS 2 =25m.

So, the peak has now moved to positionz=2.5matt =2 s.
Likewise, every point on this function moves the same distance (1 m) in this time (1
s). = This is called

: v il
The speed of this movement is: rr? = =1ms=y,




Characteristic Impedance (Z)

no waves in the
opposite direction

A wave is traveling in the

(2 Use Telegrapher’s Equation:

& Hence:

& From this we have:



Z,for Backward-Traveling Wave

A wave is traveling in the

Note: The reference directions for
voltage and current are the same as
for the forward wave.



General Case

Most general case: A general superposition of forward and
backward traveling waves:

e .‘ 2 :
_ Microwaye

Both of these equations should be committed to

memory. They are the general form of phasor

‘
*
’0
0




50 OhmT-Lines!!




The Lossless T-Line
e SEtR’ = G’ —2(f)

B So

real and independent of frequency

Independent of f

2 If the medium between the two conductors is homogeneous
(uniform) and is characterized by (u, ), then we have that:

It is always the speed of light (in the

material).




Generality of T-Line Theory
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Terminated T-Line-|

Terminatzrogaidn)wpedance
VO+ V.
A a3

Where do we assign z =0? 9
| : Y

For mathematical convenience, the

usual choice is at the load, 1.e., z = 0.

The length £
measures distance from

theload: ¢ = —z

ZOIY

/




Terminated T-Line-ll

B The “lumped load” Z; that terminates the TL is considered a
for the voltage and current:

&2 Apply this boundary condition as:

2 Hence

B Solving for V-/V;t, and defining this ratio as the
(z=0), wefind




Zin of a T-Line-|
Terminating impedance (load)

¢ = distance away from load

m

E« Input impedance seen
“looking” towards load at

Ea« Similarly, the current at z = —# z=—1

AQY) =4



Zin of a T-Line-ll

Ea« Subsitituting for I';, = Ziég:

Eax Thus,




Zin of a T-Line-lll

B« Using trigonometric identities:

E« Hence, we have

E« Divide both the numerator and the denominator by cosh(y?)

Z1, + Zp tanh(v/¢)
Zo+ 71, tanh(*y@)

Zin = Z(—£) = Zo




Input Impedance of a Lossless TL

Zo, s

tan repeats when

Z(—) = Z, Zr1, + jZytan(B5Y)

Zy + jZ1, tan(34)

tanh y£ =tanh jff =jtan(f?)



Matched Load (Z;, = Z,)

Matched
terminatio

&) L

The Input Impedance Is Z
regardless of the length of the TL.




Short-Circuit Load (Z; = 0)

Zo,p
Xsc
:w A Zo
TN
£/
¥ 34 12 -l4 0

= 740 tan(ﬁﬁ)

S.C. can become an O.C.
witha /4TL




Open-Circuit Load (Z, = o)

Zo,p
Z(—7
Xoc
Zy
) 1/,
Note: PN 12 -1/4 0

O.C. can become a S.C. with
a /4 transmission line.




Using TLs to Synthesize Elements

Byq We can obtain any reactance that we want from a short or open
TL.

» This is very useful is microwave engineering.

A microwave filter constructed from microstrip.






