

Microwave Engineering ETE 415

LECTURE 5 IMPEDANCE MATCHING

Impedance Matching

- Impedance matching (or simply "**matching**") one portion of a circuit to another is an immensely important part of MW engineering.
- Additional circuitry between the two parts of the original circuit may be needed to achieve this matching.

Why is impedance matching so important?

- **Maximum power** is delivered to a load when the TL is matched at both the load and source ends.
- With a properly matched TL, more signal power is transferred to the load, which increases the **sensitivity** of the device and improve the signal-to-noise ratio of the system.
- Some equipment (such as certain amplifiers) can be **damaged** when too much power is reflected back to the source.
- **Minimize** reflections.

Impedance Matching

● Consider the case of an arbitrary load that terminates a TL:

- To match the load to the TL, we require $\Gamma_L = 0$.
- However, if $Z_L \neq Z_0$ **additional circuitry** must be placed between Z_L and Z_0 to bring the $VSWR = 1$, or least approximately so:

 Z_0 , β $\boxed{I_L}$ Z_L

 Γ_L^-

$$
Z_0, \beta
$$
 \longrightarrow Γ_L

$$
Z_{\text{in}}
$$
 Matching Z_L

$$
Z_{\text{in}}
$$

For $\Gamma_l = 0$, this implies $Z_{in} = Z_0$. In other words, $R_{\text{in}} = \Re e[Z_0]$ and $X_{\text{in}} = 0$, if the TL is lossless.

Impedance Matching

- Wewill discuss **three methods** for impedance matching in this course:
	- Matching with **L-Sections** (lumped elements)
	- **Stub** tuners (T-line)
	- **Quarter wave** impedance transformers.
- **Factors** that influence the choice of a matching network include:
	- Physical complexity
	- Bandwidth
	- Adjustability (to match a variable load impedance) Implementation

Matching with L-Sections

- Since it uses lumped elements, it is applicable **only** if the frequency is low enough, or the circuit size is small enough
- This network topology gets its name from the fact that the series and shunt elements of the matching network form an **"L" shape**.
- Two possible L-Sections:

Example

Design an L-section matching network to match a series RC load with an impedance $Z_i = 200 - j100 \Omega$ to a 100 Ω line at a frequency of 500 MHz.

Since $R_L > Z_0$, we'll use the following circuit topology:

Solution

Solution

Solution

Since $B < 0$, we identify this as a **inductor**. Therefore,

Single-Stub Tuner (SST) Matching

- The SST uses a shorted or open section of TL attached at some position along another TL.
- It does not require lumped elements.
- It can be used for extremely high frequencies.
- It uses segments of T-lines with the **same Z₀** (not necessary) used for the feeding line.
- **Easy** to fabricate, the length can easily be made **adjustable** and little to **no power** is **dissipated** in the stub. (An open stub is sometimes easier to fabricate than a short.)
- It is very convenient for microstrip and stripline technologies.

Single-Stub Shunt Matching

First TL converts $Y_L = 1/Z_L$ to an admittance $Y_0 + jB$ Second TL converts a short or an open to an admittance $-jB$

Single-Stub Series Matching

First TL converts Z_L to an impedance $Z_0 + jX$

Second TL converts a short or an open to an impedance $-jX$

ECE 323 Spring 2018 We only need to find d and ℓ_s

SST Using the Smith Chart

In terms of quantities **normalized** to Z_0 or Y_0 , the geometry is

ECE 323 Spring 2018 Example 5.2: Using the Smith chart, design a shorted shunt, single-stub tuner to match the load $Z_L = 60 - j80 \Omega$ to a TL with characteristic impedance $Z_0 = 50 \Omega$.

The normalized load impedance is: $z_L = 1.2 - j1.6 \text{ p.u.}\Omega$

Solution: Smith

There will be **two solutions**. Both of these give $y = 1 \pm jb_1$. For this example, we find from the Smith chart that (I) $y_1' = 1 + j1.47$ (II) $y'_2 = 1 - j1.47$

From these rotations we can compute d as (I) $d_1 = 0.176\lambda - 0.065\lambda = 0.110\lambda$ (II) $d_2 = 0.325\lambda - 0.065\lambda =$ 0.260λ

ECE 323 Spring 2018 Next, find the stub lengths ℓ_s : (I) want $b_{s_1} = -1.47$ (II) want $b_{s2} = 1.47$ When either of these two susceptances is added to y'_1 , then $y_{in} = 1$.

Solution: Smith

The stub lengths can be determined directly from the Smith chart.

ECE 323 Spring 2018 Dr. Ahmed Farghal On the Smith admittance chart, $y_I = \infty$ is located at $\Re e \, I = 1$, $\mathcal{F} = 0$. From there, rotate "wavelengths towards generator" to:

(I) $b_s = -1.47$ \Rightarrow $\ell_{s1} = 0.345\lambda - 0.25\lambda = 0.095\lambda$ (II) $b_s = +1.47 \Rightarrow \qquad \ell_{s2} = 0.25\lambda + 0.155\lambda = 0.405\lambda$

The final two solutions are:

(I) $d_1 = 0.110\lambda$ and $-\ell_s = 0.095\lambda$ (II) $d_2 = 0.260\lambda$ and $\ell_s = 0.405\lambda$

Solution: Smith

Solution 1 has a significantly better bandwidth than solution 2.

ECE 323 Spring 2018 Shorter stub produces wider bandwidth.

Quarter-Wave-Transformer Matching

Quarter-Wave-Transformer Matching

This result is an interesting characteristic of TLs that are exactly $\lambda/4$ long.

We can harness this characteristic to **design a matching network** using a λ /4 -length section of TL.

> $Z_1=\sqrt{Z_0R_L}$ $\left(3\right)$

Note that we can adjust Z_1 in (2) so that $Z_{in} = Z_0$. In particular, from (2) with $Z_{in} = Z_0$ we find

In other words, a $\lambda/4$ section of TL with this particular characteristic impedance will present a perfect match ($\Gamma = 0$) to the feedline (the left-hand TL).

This type of matching network is called a **quarter-wave transformer (QWT)**.

Disadvantages of QWTs

1. A TL must be **placed** between the load and the feedline.

ECE 323 Spring

- 1. A very **special characteristic impedance** (i.e., Z_1) for the QWT is required, which depends both on the load resistance, R_L , and the characteristic impedance of the feedline, Z_0 .
- **Dr. Ahmed Farghal** 1. QWTs work perfectly only for **one load at one frequency**. (Actually, it produces some bandwidth of "acceptable" VSWR on the TL, as do all real-life matching networks.)

Thank you Very Much !!!