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Abstract- As the numbers of web users are increasing 
exponentially, the software complexity is increasing exponentially 
and the malwares are increasing exponentially, so exhaustive and 
extensive testing of websites has become a necessity today. But 
testing of a website is not 100% exhaustive as the page explosion 
problem is also very usual. In this paper, we propose to reuse the 
basis test paths as obtained from the Page-Test-Trees (PTTs) for 
white box testing of websites. We traverse the same set of paths 
(obtained above) and test for the source code at these nodes. This 
saves significant amount of time required to generate test paths 
and hence test cases as compared to the existing approaches of 
white box testing. The cost and efforts are also minimized. The 
proposed technique ensures better website testing coverage as 
white box testing provides better results than black box testing. 
Then we validate the proposed reusability testing with two web 
navigational structures. The results show that doing regression 
testing can save several billion dollars. These test cases can be 
further minimized by using prioritization techniques of 
regression testing. 

Keywords- Website testing, Website-Under-Test (WUT), Page 
Flow Diagrams, Navigation, Page test Tree, Path Testing and 
Regression testing.  

I.  INTRODUCTION  
Software testing is the process of executing the program with 

the intent of finding errors [1, 22]. Website testing, however, is 
more complex as the websites are becoming complex day by day. 
Software testing accounts for nearly 50% of the total development 
cost [10]. Exhaustive testing is not possible with websites. This is 
due to several reasons:- 

 Numbers of Internet users are increasing exponentially. 

 As websites become more complex, their cyclomatic      
complexity, V (G), also increases. A high V (G) implies 
lesser security [2]. The complexity explosion in 
software is exponential. 

 Page explosion problem is also a serious issue. 

From the website’s navigational structure, we can draw its 
page-flow-diagram (PFD) and hence it’s page-test-tree. From 
page-test-trees, test paths can be generated [3]. PFDs are used to 
compute the cyclomatic complexity, V (G). In this work , we 
compute V(G) of PFDs, reduce the number of paths based on all-

path-coverage criteria of  basis path testing approach of white box 
testing and finally reuse these paths and hence the test cases for 
white-box testing of websites. We have chosen path testing 
technique because path testing can alone detect almost 65% of the 
errors in the software [4]. Even if positive and negative tests are 
generated, yet there is no complete 100% of coverage. It is this 
white-box testing that helps to extend the test cases reasonably 
[5]. This work is an extension of earlier works on PFDs and PTTs 
of websites [3, 6].  

In general, firstly black box testing is applied to test web 
components (Graphical User Interfaces) and white-box testing is 
done at later stages when source code starts creeping in. In this 
paper, the test-paths (and hence test cases) so generated after 
black-box testing are reused to do subsequent white-box testing 
using these paths only. This tests websites extensively. This has 
many significant benefits- 

Test data is already available and also the test paths. Hence, 
we need to test source code at these points (nodes) only. 

Branching nodes can be pruned; paths can be pruned, if 
required. 

V (G) detects more security vulnerabilities and errors in 
website-under-test (WUT). 

Black box testing covers more number of paths as compared 
to state based testing. 

The main objective of present paper is to show the reusability 
of Black-box generated test paths for white-box testing of 
websites. Earlier the time taken to test website was the time taken 
to create the test paths for black box testing plus the time taken to 
get the paths for white box testing. But now the time taken to 
derive the test paths is only the time taken to derive the test paths 
from page test trees. In order to achieve this, we perform 
regression testing using these basis paths on two web navigational 
structures. 

II RELATED WORK 
Many researchers have proposed different testing approaches 

each of which has a different origin and pursuing different test 
goals for dealing with the unique characteristics of web 
applications. A few of related recent studies are stated below- 
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In paper given by B.M. Subraya and S.V. Subramanya [11], a 
performance testing approach has been used to decompose the 
behavior of a website into testable components. 

M. Benedikt [12] built a dynamic tool named as VeriWeb, to 
test web applications. VeriWeb’s tool is based on graphs where 
nodes are Web pages and edges are explicit HTML links. But it 
never suggests using of these paths again for testing. 

S. Elbaum uses the input data collected and remembered from 
previous user sessions and HTML forms. Better test cases are 
obtained [13]. 

The paper given by A. Andrews [14] proposes a method of 
deriving test cases from Finite State Machines. Even FSMs suffer 
from state explosion problem. 

Fillipo Ricca and Paolo Tonella stress that Web page is a 
central entity in any website. Webpages can be static or dynamic. 
They use white-box testing criteria like page testing, All-uses 
testing and All-paths testing criteria are also applied on websites. 
They discuss about path expressions and node-reduction 
algorithms. They have developed tools names as Reweb and 
TestWeb. The All-path testing criterion is achieved. It is restricted 
to independent paths [15]. 

Eric Y. K. Chan and Y. T. Yu used a classification tree 
method (CTM) as the black-box criterion and “same path” as 
white box criterion. CTM are actually the hierarchical trees. 
However, no web pages are considered [16]. 

The paper given by Jingxian Gu, Lei Xu, Baowen Xu, Hongji 
Yang, applied traditional MM-path based strategy to component 
based web application. So, they extended MM-path testing 
method. They stressed that normally, MM-path always starts from 
the main function and ends at the main function but paths in 
component-based web application can start from one page and 
end at another page without return paths [17]. 

Bo Song and Huaikou Miao developed navigation model to 
generate test. But it is a directed graphs and graphs have problems 
like cycle. So, EFSM is not easy to use. It will generate a set of 
test cases with duplicity. So, a FSM test tree (FSM-TT) is 
proposed. Shorter test sequences can be generated without loss of 
states. But this sequence of paths has not been utilized further 
except for generation of black-box paths for testing [18]. 

Hui-Zhong Shi, Bo Chen and Ling Yu integrated black box 
and white-box testing to propose a generic framework of web 
security evaluation. No consideration on Basis Path testing is 
considered [19]. 

Nicha Kosindrdecha, JiraPun Daengdej aims to derive tests 
from state chart diagrams. This is a UML based diagram [20]. 

Lixin Wang divides a program into many segments with small 
cyclomatic complexity. But for every segment the paths are 
derived again and the focus is on white box testing alone [24]. 

Du Qingfeng, Dong Xiao use basis path testing alone to show 
how this method can be used for testing codes having switch 
statements also in addition to the ‘if statements’. They also used 
only white box testing  approach [7]. 

Thus after a long literature survey, we find that much of the 
work has been done on black box and white box testing of 
websites while much less has been done on reusability of paths of 
black box testing. 

The proposed methodology is as follows- 

1. Construct PFD (Page Flow Diagram) of website under test. 

2. From PFD draw its PTT (page Test Tree). 

3. Get independent basis paths to test. 

4. Consider these paths again and conduct white-box testing 
(basis path testing) and generate test samples to carry out 
targeted testing. Use only independent paths. 

5. According to vulnerabilities generate test reports.  

 

III. CASE STUDIES 

3.1 CASE STUDY – I 
Consider an OnlineShopping.com website navigational 

structure. A test-path generation approach followed above is 
used. The navigation structure of this website is as follows- 

 

 
      
      
      
      
      
      
      

  
                                                                         
 
 
 
 
 

Fig. 1  A website navigation tree example  

For this scenario, a Page Flow Diagram is firstly constructed.  
So, we draw the PFD of the above web-project—Online 

Shopping.com :- 
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 Fig. 2 Corresponding PFD of onlineShop website (block arrow shows first 
link entering into default page) 

 
This PFD is essentially a graph. But graphs are sometimes 

problematic as they may contain cycles. This complicates the 
testing process. So, this PFD must be converted to a spanning 
tree. Hence, we get a Page Test Tree (PTT) based on our PFD. 
From PTT shorter paths can be generated. (than in PFD) without 
the loss of page and link coverage [3].  

The construction algorithm (PFD-to-PTT) is as follows- 

Consider two tables, T1 and T2 where- 

a) First_table (T1): Has page identifiers (p1…….pn) which 
are unexplored or unmarked. 

b) Second_table (T2): Has page identifiers (p1….pn) 
which have been explored from T1 and added to T2.   

        These are marked nodes. 

Initially, both T1 and T2 are empty (Φ). 

In our work, we apply the algorithm [3] to the project – 
OnlineShopping.com. For the PFD shown in Fig. 3, we 
analyze the contents of T1 and T2 as depicted in Table-1- 

Table 1: Contents of T1 and T2 for case study-I 

STEPS T1 T2 COMMENTS 
1 p1 Φ Start with p1 

2 p2,p3,p4 p1 p1 is explored 
3 p3,p4,p5 p1,p2 p2 is explored 
4 p4,p5,p5 p1,p2,p3 p3 explored 
5 p5,p5,p5 P1,p2,p3,p4 p4 explored 
6 p5,p5,p6,p7,p8 p1,p2,p3,p4,p5 p5 explored 
7 p5,p6,p7,p8 P1,p2,p3,p4,p5 del p5 as it is 

in T2 
8 p6,p7,p8 P1,p2,p3,p4,p5 del p5 as it is 

in T2 
9 p7,p8,p5 p1,p2,p3,p4,p5,p6 p6 is explored 
10 p7,p8 p1,p2,p3,p4,p5,p6 del p5 as it is 

in T2 
11 p5,p8,p8 p1,p2,p3,p4,p5,p6,p7 p7 explored 
12 p8,p8 p1,p2,p3,p4,p5,p6,p7 del p5 as it is 

in T2 
13 p8 p1,p2,p3,p4,p5,p6,p7,p8 p8 explored 
14 Φ p1,p2,p3,p4,p5,p6,p7,p8 del p8 as it is 

in T2 
 
Hence, we get the following PTT for our 
onlineShopping.com website- 
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Fig. 3: PTT for PFD of fig.2 . 
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There are 13 links in Fig. 4 and 14 steps are needed for 
conversion from PFD to PTT.  

A path is a possible sequence of links starting from the 
root-link and ending in any link during navigation [3]. A path 
is denoted by  

k1->k2->k3->k4->……….kn; where ki is a link such that 
1<=i<=n and n>0. 

Hence, the test path is a path from the root link of the tree 
to a tail link. The objective is to find these paths. Path 
expressions directly represent all test paths in a tree; they can 
be used to generate sequences of links which satisfy any of the 
coverage criteria. To satisfy a given criterion, determine the 
minimum number of test paths from a path expression. A PTT 
is used to establish path expressions [21] where a path 
expression is defined as an algebraic representation of paths in 
a tree. Variables in the path expression are links. They can be 
combined using operators like + and *, that denote selection 
and loop respectively. Brackets may used to group sub path-
expressions. For example,  

    k1->k2->k5->(k9+k10) is a path expression. In this 
example, a selection is encountered at k5 with 

 k9 = (p5, p6) 

& k10 = (p5, p7) 

In [21], B. Beizer has given a Node-Reduction algorithm 
for computing path expressions for a web application. These 
path expressions are used to get test-paths automatically and 
hence the test cases. 

Since there are five (5) tail links in PTT of figure 4, so 
there are 5 test paths in this PTT. These test paths are as 
follows- 

Path-1: k1->k2->k5->k9->k8 
Path-2: k1->k2->k5->k10->k11 
Path-3: k1->k2->k5->k10->k11->k13 
Path-4: k1->k3->k6 
Path-5: k1->k4->k7 

The entire path expression for PTT of Fig. 4 is as follows— 

k1->(k2->k5->k9->k8 + k10->(k11 + k12->(k13+k3--->(k6 + 
(k4->k7))))) 

Since these five paths (from root-link to tail-link) cover all the 
links, so it is All-links-coverage strategy. 

Also, since all the nodes underlined and the corresponding 
edges pointing to them are pruned (removed) from the tree, so we 
get the minimum number of test paths that cover all pages under 
consideration. This is All-pages-coverage strategy.  Obviously, 
the test paths of All-links-coverage pass the test paths of All-
pages-coverage[3]. 

But surprisingly, this website is a smaller one. Now –a-days, 
websites are very complex as they have numerous pages and links 
[22]. In such a scenario, it is difficult to proceed as the PFDs and 
PTTs will be very complex, large and unmanageable. So, 
exhaustive exploration is difficult to achieve. Hence, a divide-
and-conquer strategy may be followed to divide a website into 
sub-websites and recursively applying this model of testing. For 
each sub-website, a corresponding PFD and PTT will be there. If 
there are n sub-websites then we will get {PFD1 , PFD2 , 

……..PFDn } and { PTT1 , PTT2 , PFDn }, page flow diagrams and 
page test trees respectively. So, sub-websites can be conquered 
respectively [3].  Many other approaches exist in literature to 
solve page explosion problem- Pairwise coverage, Heuristic 
webpage testing, Using web crawlers. 

 The graph (PFD) of Fig. 3 is a sort of Control Flow Graph 
(CFG) that is not strongly connected. But they become strongly 
connected when a ‘virtual edge’ is added connecting exit node to 
the entry node [21]. Now, we need to convert PFD of fig. 2 to a 
strongly connected graph as it is only then we can find cyclomatic 
complexity V(G) of this graph and hence go for white-box or 
non-functional or structural testing. Consider fig. 3 again. 
Observe that the entry node (p1) has an outdegree of 3. But this is 
problematic as it violates the definition of predicate nodes (with 
outdegree as 2). To adjust for this, a predicate node can be split 
into two subnodes as shown in Fig. 4. 
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Fig. 4: Division of node p1 

 
Now, the cyclomatic complexity, V (G) of this graph is:- 

a) V(G) =e-n+1 = 13-9+1 = 5 

b) V(G) = Number of enclosed regions + 1 =7 

c) V(G) = P +1 = 4 +1 =5 [p1.1,p1.2,p5 and p7 are 
predicate nodes] 

p1.1
.2 

p1.2 

p2 p3 p4 

p5 

p6 
p7 

p8 

p1.1
.1 
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 Now, this is incorrect V(G ) as V(G) must be same by all the 
three methods. Even if we add a new edge (virtual edge), its 
addition also makes node p1.1 problematic. So, we divide it into 
sub nodes again as shown in Fig. 5.                                       
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Fig. 5 Division of p5 node 
 

Therefore, we find V (G) by all the three methods again:- 

a) V(G) = e-n+2 = 16-11+2 = 5+2=7 

b) V(G) = P+1 = 6+1 = 7 [Nodes P1 ,P2 ,P3 ,P4 P5  and P6  ] 

c) V(G) = Number of enclosed regions +1=6+1=7 

Hence, V (G) is same by all the three methods. 

This implies that there must be 7 independent paths which is 
not the minimum number of paths and they are as follows:- 

Path 1: p1->p2->p5->p6->p5 

Path 2: p1->p3->p5->p7->p5 

Path 3: p1->p3->p5->p8 

Path 4: p1->p3->p5->p7->p5->p8 

Path 5: p1->p4->p5->p8 

Path 6: p1->p4->p5->p7->p5->p8 

Path 7: p1->p3->p5->p7->p8 

But we know that every path must introduce a new node. So, 
path-5 and path-7 are not required as they do not introduce any 
new node. That is, five paths are sufficient to test this website 
thoroughly. Hence, five test cases must be derived. 

  This result is same as that of PTT based approach (i.e. V 
(G) =5). This implies that we can reuse the paths obtained from 
PTTs for white-box testing directly. 

3.2 CASE STUDY-II 
To further verify this mixed approach of testing, consider 

another website structure. Its Page Flow Diagram (PFD) is a 
shown below- 
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Fig. 6: Another PFD example 

This PFD is converted to a Page Test Tree (PTT) using steps 
given earlier. Hence, we get the following PTT— 
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Fig. 7 PTT for case study-II 

So, there are five test paths and are as follows:- 

Path 1: p1->p2 

Path 2: p1->p3->p7->p3 

Path 3: p1->p3->p4->p5->p5  

Path 4: p1->p3->p4->p5->p6->p1 

Path 5: p1->p3->p4->p6->p1 

But here path-3 and path-5 are not required to be traversed as 
they are already covered in other paths. So, three (3) paths are 
sufficient to test this website. 

From PFD above, 

a) V(G) = e-n+2 = 8-7+2 = 1+2 = 3 

b) V(G) = P+1 = 2+1 = 3 

c) V(G) = Number of enclosed regions + 1 =2+1 = 3 

Therefore, V (G) is same by all the three methods. This is also 
equal to the paths obtained from PFD. This means that we can 
directly use the paths obtained from PTTs for white-box testing 
too. 

V CONCLUSIONS 
In this paper, we have shown that the test-paths derived from 

black-box testing of websites can be further utilized to do white-
box testing of any website under test. All earlier works do not 
utilize these paths so extensively. So, in this paper we extend the 
same black box paths for structural testing using basis path 
analysis technique. This saves cost, time and manpower. There 
are several directions for future works. Using this methodology 
for AJAX based applications, test case generations, test case 
reduction and test driven development based on the test paths are 
some of them. 
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