
Reusing Black Box Test Paths For White Box Testing
of Websites

Rajiv Chopra
Computer Science Engg./ IT

GTBIT, GGSIPU DELHI
Delhi, India

raj_74chopra2004@yahoo.com

Sushila Madan
Computer Science Department

University of Delhi, Delhi
Delhi, India

sushila_lsr@yahoo.com

Abstract- As the numbers of web users are increasing
exponentially, the software complexity is increasing exponentially
and the malwares are increasing exponentially, so exhaustive and
extensive testing of websites has become a necessity today. But
testing of a website is not 100% exhaustive as the page explosion
problem is also very usual. In this paper, we propose to reuse the
basis test paths as obtained from the Page-Test-Trees (PTTs) for
white box testing of websites. We traverse the same set of paths
(obtained above) and test for the source code at these nodes. This
saves significant amount of time required to generate test paths
and hence test cases as compared to the existing approaches of
white box testing. The cost and efforts are also minimized. The
proposed technique ensures better website testing coverage as
white box testing provides better results than black box testing.
Then we validate the proposed reusability testing with two web
navigational structures. The results show that doing regression
testing can save several billion dollars. These test cases can be
further minimized by using prioritization techniques of
regression testing.

Keywords- Website testing, Website-Under-Test (WUT), Page
Flow Diagrams, Navigation, Page test Tree, Path Testing and
Regression testing.

I. INTRODUCTION
Software testing is the process of executing the program with

the intent of finding errors [1, 22]. Website testing, however, is
more complex as the websites are becoming complex day by day.
Software testing accounts for nearly 50% of the total development
cost [10]. Exhaustive testing is not possible with websites. This is
due to several reasons:-

 Numbers of Internet users are increasing exponentially.

 As websites become more complex, their cyclomatic
complexity, V (G), also increases. A high V (G) implies
lesser security [2]. The complexity explosion in
software is exponential.

 Page explosion problem is also a serious issue.

From the website’s navigational structure, we can draw its
page-flow-diagram (PFD) and hence it’s page-test-tree. From
page-test-trees, test paths can be generated [3]. PFDs are used to
compute the cyclomatic complexity, V (G). In this work , we
compute V(G) of PFDs, reduce the number of paths based on all-

path-coverage criteria of basis path testing approach of white box
testing and finally reuse these paths and hence the test cases for
white-box testing of websites. We have chosen path testing
technique because path testing can alone detect almost 65% of the
errors in the software [4]. Even if positive and negative tests are
generated, yet there is no complete 100% of coverage. It is this
white-box testing that helps to extend the test cases reasonably
[5]. This work is an extension of earlier works on PFDs and PTTs
of websites [3, 6].

In general, firstly black box testing is applied to test web
components (Graphical User Interfaces) and white-box testing is
done at later stages when source code starts creeping in. In this
paper, the test-paths (and hence test cases) so generated after
black-box testing are reused to do subsequent white-box testing
using these paths only. This tests websites extensively. This has
many significant benefits-

Test data is already available and also the test paths. Hence,
we need to test source code at these points (nodes) only.

Branching nodes can be pruned; paths can be pruned, if
required.

V (G) detects more security vulnerabilities and errors in
website-under-test (WUT).

Black box testing covers more number of paths as compared
to state based testing.

The main objective of present paper is to show the reusability
of Black-box generated test paths for white-box testing of
websites. Earlier the time taken to test website was the time taken
to create the test paths for black box testing plus the time taken to
get the paths for white box testing. But now the time taken to
derive the test paths is only the time taken to derive the test paths
from page test trees. In order to achieve this, we perform
regression testing using these basis paths on two web navigational
structures.

II RELATED WORK
Many researchers have proposed different testing approaches

each of which has a different origin and pursuing different test
goals for dealing with the unique characteristics of web
applications. A few of related recent studies are stated below-

1345978-1-4673-4529-3/12/$31.00 c©2012 IEEE

In paper given by B.M. Subraya and S.V. Subramanya [11], a
performance testing approach has been used to decompose the
behavior of a website into testable components.

M. Benedikt [12] built a dynamic tool named as VeriWeb, to
test web applications. VeriWeb’s tool is based on graphs where
nodes are Web pages and edges are explicit HTML links. But it
never suggests using of these paths again for testing.

S. Elbaum uses the input data collected and remembered from
previous user sessions and HTML forms. Better test cases are
obtained [13].

The paper given by A. Andrews [14] proposes a method of
deriving test cases from Finite State Machines. Even FSMs suffer
from state explosion problem.

Fillipo Ricca and Paolo Tonella stress that Web page is a
central entity in any website. Webpages can be static or dynamic.
They use white-box testing criteria like page testing, All-uses
testing and All-paths testing criteria are also applied on websites.
They discuss about path expressions and node-reduction
algorithms. They have developed tools names as Reweb and
TestWeb. The All-path testing criterion is achieved. It is restricted
to independent paths [15].

Eric Y. K. Chan and Y. T. Yu used a classification tree
method (CTM) as the black-box criterion and “same path” as
white box criterion. CTM are actually the hierarchical trees.
However, no web pages are considered [16].

The paper given by Jingxian Gu, Lei Xu, Baowen Xu, Hongji
Yang, applied traditional MM-path based strategy to component
based web application. So, they extended MM-path testing
method. They stressed that normally, MM-path always starts from
the main function and ends at the main function but paths in
component-based web application can start from one page and
end at another page without return paths [17].

Bo Song and Huaikou Miao developed navigation model to
generate test. But it is a directed graphs and graphs have problems
like cycle. So, EFSM is not easy to use. It will generate a set of
test cases with duplicity. So, a FSM test tree (FSM-TT) is
proposed. Shorter test sequences can be generated without loss of
states. But this sequence of paths has not been utilized further
except for generation of black-box paths for testing [18].

Hui-Zhong Shi, Bo Chen and Ling Yu integrated black box
and white-box testing to propose a generic framework of web
security evaluation. No consideration on Basis Path testing is
considered [19].

Nicha Kosindrdecha, JiraPun Daengdej aims to derive tests
from state chart diagrams. This is a UML based diagram [20].

Lixin Wang divides a program into many segments with small
cyclomatic complexity. But for every segment the paths are
derived again and the focus is on white box testing alone [24].

Du Qingfeng, Dong Xiao use basis path testing alone to show
how this method can be used for testing codes having switch
statements also in addition to the ‘if statements’. They also used
only white box testing approach [7].

Thus after a long literature survey, we find that much of the
work has been done on black box and white box testing of
websites while much less has been done on reusability of paths of
black box testing.

The proposed methodology is as follows-

1. Construct PFD (Page Flow Diagram) of website under test.

2. From PFD draw its PTT (page Test Tree).

3. Get independent basis paths to test.

4. Consider these paths again and conduct white-box testing
(basis path testing) and generate test samples to carry out
targeted testing. Use only independent paths.

5. According to vulnerabilities generate test reports.

III. CASE STUDIES

3.1 CASE STUDY – I
Consider an OnlineShopping.com website navigational

structure. A test-path generation approach followed above is
used. The navigation structure of this website is as follows-

Fig. 1 A website navigation tree example

For this scenario, a Page Flow Diagram is firstly constructed.
So, we draw the PFD of the above web-project—Online

Shopping.com :-

Login.asp
(p1)

New_user_fr
m.asp(p3)

(p3)

Olduser1.
asp (p2)

Forgot_user1.
asp (p4)

layout.asp
(Home)p5

Under_constr
uct (p6) m

Shopper_for
m.asp (p7)

User_bill.asp
(p8)

1346 2013 3rd IEEE International Advance Computing Conference (IACC)

 k5 k6 k7

 k8 k9 k10 k11 k13

 k12

 Fig. 2 Corresponding PFD of onlineShop website (block arrow shows first
link entering into default page)

This PFD is essentially a graph. But graphs are sometimes

problematic as they may contain cycles. This complicates the
testing process. So, this PFD must be converted to a spanning
tree. Hence, we get a Page Test Tree (PTT) based on our PFD.
From PTT shorter paths can be generated. (than in PFD) without
the loss of page and link coverage [3].

The construction algorithm (PFD-to-PTT) is as follows-

Consider two tables, T1 and T2 where-

a) First_table (T1): Has page identifiers (p1…….pn) which
are unexplored or unmarked.

b) Second_table (T2): Has page identifiers (p1….pn)
which have been explored from T1 and added to T2.

 These are marked nodes.

Initially, both T1 and T2 are empty (Φ).

In our work, we apply the algorithm [3] to the project –
OnlineShopping.com. For the PFD shown in Fig. 3, we
analyze the contents of T1 and T2 as depicted in Table-1-

Table 1: Contents of T1 and T2 for case study-I

STEPS T1 T2 COMMENTS
1 p1 Φ Start with p1

2 p2,p3,p4 p1 p1 is explored
3 p3,p4,p5 p1,p2 p2 is explored
4 p4,p5,p5 p1,p2,p3 p3 explored
5 p5,p5,p5 P1,p2,p3,p4 p4 explored
6 p5,p5,p6,p7,p8 p1,p2,p3,p4,p5 p5 explored
7 p5,p6,p7,p8 P1,p2,p3,p4,p5 del p5 as it is

in T2
8 p6,p7,p8 P1,p2,p3,p4,p5 del p5 as it is

in T2
9 p7,p8,p5 p1,p2,p3,p4,p5,p6 p6 is explored
10 p7,p8 p1,p2,p3,p4,p5,p6 del p5 as it is

in T2
11 p5,p8,p8 p1,p2,p3,p4,p5,p6,p7 p7 explored
12 p8,p8 p1,p2,p3,p4,p5,p6,p7 del p5 as it is

in T2
13 p8 p1,p2,p3,p4,p5,p6,p7,p8 p8 explored
14 Φ p1,p2,p3,p4,p5,p6,p7,p8 del p8 as it is

in T2

Hence, we get the following PTT for our
onlineShopping.com website-

 k1

Fig. 3: PTT for PFD of fig.2 .

p1

p5

p6 p7

p8

p2 p3 p4

p1

p2 p3 p4

p5 p5 p5

p6 p7

p5 p5 p5

p8

k1

k2

k3

k4

k5 k6 k7

k9 k10

k8
k11

k12

k13

2013 3rd IEEE International Advance Computing Conference (IACC) 1347

There are 13 links in Fig. 4 and 14 steps are needed for
conversion from PFD to PTT.

A path is a possible sequence of links starting from the
root-link and ending in any link during navigation [3]. A path
is denoted by

k1->k2->k3->k4->……….kn; where ki is a link such that
1<=i<=n and n>0.

Hence, the test path is a path from the root link of the tree
to a tail link. The objective is to find these paths. Path
expressions directly represent all test paths in a tree; they can
be used to generate sequences of links which satisfy any of the
coverage criteria. To satisfy a given criterion, determine the
minimum number of test paths from a path expression. A PTT
is used to establish path expressions [21] where a path
expression is defined as an algebraic representation of paths in
a tree. Variables in the path expression are links. They can be
combined using operators like + and *, that denote selection
and loop respectively. Brackets may used to group sub path-
expressions. For example,

 k1->k2->k5->(k9+k10) is a path expression. In this
example, a selection is encountered at k5 with

 k9 = (p5, p6)

& k10 = (p5, p7)

In [21], B. Beizer has given a Node-Reduction algorithm
for computing path expressions for a web application. These
path expressions are used to get test-paths automatically and
hence the test cases.

Since there are five (5) tail links in PTT of figure 4, so
there are 5 test paths in this PTT. These test paths are as
follows-

Path-1: k1->k2->k5->k9->k8
Path-2: k1->k2->k5->k10->k11
Path-3: k1->k2->k5->k10->k11->k13
Path-4: k1->k3->k6
Path-5: k1->k4->k7

The entire path expression for PTT of Fig. 4 is as follows—

k1->(k2->k5->k9->k8 + k10->(k11 + k12->(k13+k3--->(k6 +
(k4->k7)))))

Since these five paths (from root-link to tail-link) cover all the
links, so it is All-links-coverage strategy.

Also, since all the nodes underlined and the corresponding
edges pointing to them are pruned (removed) from the tree, so we
get the minimum number of test paths that cover all pages under
consideration. This is All-pages-coverage strategy. Obviously,
the test paths of All-links-coverage pass the test paths of All-
pages-coverage[3].

But surprisingly, this website is a smaller one. Now –a-days,
websites are very complex as they have numerous pages and links
[22]. In such a scenario, it is difficult to proceed as the PFDs and
PTTs will be very complex, large and unmanageable. So,
exhaustive exploration is difficult to achieve. Hence, a divide-
and-conquer strategy may be followed to divide a website into
sub-websites and recursively applying this model of testing. For
each sub-website, a corresponding PFD and PTT will be there. If
there are n sub-websites then we will get {PFD1 , PFD2 ,

……..PFDn } and { PTT1 , PTT2 , PFDn }, page flow diagrams and
page test trees respectively. So, sub-websites can be conquered
respectively [3]. Many other approaches exist in literature to
solve page explosion problem- Pairwise coverage, Heuristic
webpage testing, Using web crawlers.

 The graph (PFD) of Fig. 3 is a sort of Control Flow Graph
(CFG) that is not strongly connected. But they become strongly
connected when a ‘virtual edge’ is added connecting exit node to
the entry node [21]. Now, we need to convert PFD of fig. 2 to a
strongly connected graph as it is only then we can find cyclomatic
complexity V(G) of this graph and hence go for white-box or
non-functional or structural testing. Consider fig. 3 again.
Observe that the entry node (p1) has an outdegree of 3. But this is
problematic as it violates the definition of predicate nodes (with
outdegree as 2). To adjust for this, a predicate node can be split
into two subnodes as shown in Fig. 4.

 1 2

 R6 3 4

 R1 6 5
 R2

 7 8
 15

 9
 R3 10 11 12 14

 R5

 13

Fig. 4: Division of node p1

Now, the cyclomatic complexity, V (G) of this graph is:-

a) V(G) =e-n+1 = 13-9+1 = 5

b) V(G) = Number of enclosed regions + 1 =7

c) V(G) = P +1 = 4 +1 =5 [p1.1,p1.2,p5 and p7 are
predicate nodes]

p1.1
.2

p1.2

p2 p3 p4

p5

p6
p7

p8

p1.1
.1

1348 2013 3rd IEEE International Advance Computing Conference (IACC)

 Now, this is incorrect V(G) as V(G) must be same by all the
three methods. Even if we add a new edge (virtual edge), its
addition also makes node p1.1 problematic. So, we divide it into
sub nodes again as shown in Fig. 5.

 P1

 2
 1

 P2

4
 R1 3

 P3

R2 6 5
 R3

 7 8

 9
 P4

 10 11
 12
 R4

 P5

 15

 13 R5 14 R6

 P6 16
 16

 P6

Fig. 5 Division of p5 node

Therefore, we find V (G) by all the three methods again:-

a) V(G) = e-n+2 = 16-11+2 = 5+2=7

b) V(G) = P+1 = 6+1 = 7 [Nodes P1 ,P2 ,P3 ,P4 P5 and P6]

c) V(G) = Number of enclosed regions +1=6+1=7

Hence, V (G) is same by all the three methods.

This implies that there must be 7 independent paths which is
not the minimum number of paths and they are as follows:-

Path 1: p1->p2->p5->p6->p5

Path 2: p1->p3->p5->p7->p5

Path 3: p1->p3->p5->p8

Path 4: p1->p3->p5->p7->p5->p8

Path 5: p1->p4->p5->p8

Path 6: p1->p4->p5->p7->p5->p8

Path 7: p1->p3->p5->p7->p8

But we know that every path must introduce a new node. So,
path-5 and path-7 are not required as they do not introduce any
new node. That is, five paths are sufficient to test this website
thoroughly. Hence, five test cases must be derived.

 This result is same as that of PTT based approach (i.e. V
(G) =5). This implies that we can reuse the paths obtained from
PTTs for white-box testing directly.

3.2 CASE STUDY-II
To further verify this mixed approach of testing, consider

another website structure. Its Page Flow Diagram (PFD) is a
shown below-

 Start node

 R2 R1

 Exit node

Fig. 6: Another PFD example

This PFD is converted to a Page Test Tree (PTT) using steps
given earlier. Hence, we get the following PTT—

p1.1
.2

p1.2

p2 p3 p4

p5.1

p6

p7
p8

p1.1
.1

p5.2

 p1

p2 p3

p7 p4

p5

P6

2013 3rd IEEE International Advance Computing Conference (IACC) 1349

Fig. 7 PTT for case study-II

So, there are five test paths and are as follows:-

Path 1: p1->p2

Path 2: p1->p3->p7->p3

Path 3: p1->p3->p4->p5->p5

Path 4: p1->p3->p4->p5->p6->p1

Path 5: p1->p3->p4->p6->p1

But here path-3 and path-5 are not required to be traversed as
they are already covered in other paths. So, three (3) paths are
sufficient to test this website.

From PFD above,

a) V(G) = e-n+2 = 8-7+2 = 1+2 = 3

b) V(G) = P+1 = 2+1 = 3

c) V(G) = Number of enclosed regions + 1 =2+1 = 3

Therefore, V (G) is same by all the three methods. This is also
equal to the paths obtained from PFD. This means that we can
directly use the paths obtained from PTTs for white-box testing
too.

V CONCLUSIONS
In this paper, we have shown that the test-paths derived from

black-box testing of websites can be further utilized to do white-
box testing of any website under test. All earlier works do not
utilize these paths so extensively. So, in this paper we extend the
same black box paths for structural testing using basis path
analysis technique. This saves cost, time and manpower. There
are several directions for future works. Using this methodology
for AJAX based applications, test case generations, test case
reduction and test driven development based on the test paths are
some of them.

REFERENCES
[1] Glenford J. Myers, “The Art of Software Testing”, Second Edition,

Wiley India Pvt. Ltd., 2009.
[2] www.mccabe.com/ Path Insensitive Insecurity.
[3] Zhongsheng Qian, Huaikou Miao, Hongwei Zeng, “Apractical web

testing model for web application testing”, Third International IEEE

conference on Signal-Image Technologies nd Internet-Based System,
2008.

[4] B. W. Kernighan, P. J. Plauger, “the elements of Programming Style”, Mc
Graw-Hill, Inc., New York, NY,USA,1982.

[5] Andre Takeshi Endo, Michael Linschulte, Adenilso da Silva Simao and
Simone do Rocio Senger de Souza, “Event and Coverage-based testing
of web services”, Fourth IEEE International Conference on Secure
Software Integration and Reliability Improvement Companion, 2010.

[6] Huaikou Miao, Zhongsheng Qian, Bo Song, “Towards Automatically
Generating Test Paths for Web Applications”, IEEE Symposium on
Theoretical Aspects of Software Engineering, 2008.

[7] Du Quingfeng, Dong Xiao, “An Improved Algorithm for basis
 Path Testing” , IEEE 2011.
[8] Anoj Kumar, Shailesh Tiwari, K K Mishra and A K Mishra, “

Generation of Efficient test Data using Path Selection Strategy with
Elitist GA in Regression testing”, IEEE 2010.

[9] Irman Hermadi, Chris Lokan and Rahul Sarker, “Genetic Algorithm
based Path Testing: challenges and Key parameters”, IEEE, Second
WRI World Congress on Software Engineering, 2010.

[10] Sangeeta Sabharwal, Ritu Sibal, Chayanika Sharma, “A Genetic
Algorithm based Approach for Prioritization of test case scenarios in
static testing”, International Conference on Computer and
Communication Technology(ICCCT)-2011 (IEEE).

[11] B. M. Subraya , S.V. Subrahmanya, “Object driven Performance
testing of Web Applications”, The first Asia-Pacific Conference
on Quality software, HongKong, China, Oct. 2000.

[12] M. Benedikt, J. Freire and P. Godefroid, “ VeriWeb: automatically
testing Dynamic Websites”, In Proceedings of 11th International
WWW Conference, Honolulu, HI, May 2002.

[13] S. Elbaum, S. Karre and G. Rothermal, “ Improving Web
Application with User Session Data” in the proceedings of the 25th
International Conference on Software Engineering, Portland,
Oregon, May 2003, p-p 49-59.

[14] A. Andrews, J. Offut and R. Alexender , “Testing web
Applications by Modeling with FSMs”, Software and Systems
Modeling, 2004.

[15] Fillippo Ricca and Paolo Tonella, “Analysis and Testing of Web
Applications”, ITC-irst, Centro per la Ricerca Scientificae
technologica , Italy, IEEE 2001.

[16] Eric Y. K. Chan and Y. T. Yu, “Evaluating several Path-based Partial
Dynamic Analysis Methods for selecting Black-Box generated Test
Cases”, Fourth International Conference on Quality Software ,IEEE
2004.

[17] Jingxian Gu, Lei Xu, Baowen Xu, Hongji Yang, “An Extended MM-
path Approach to Component-based Web Application Testing”, 12th
IEEE International Workshop on Future Trends of Distributed
Computing Systems, IEEE 2008.

[18] Bo Song, HuaiKou Miao, “Modelling Web Applications and Generating
Tests: A combination and Interactions-guided Approach”, 3rd IEEE
International Symposium on Theoretical Aspects of Software
Engineering, IEEE 2009.

[19] Hui-Zhong Shi, Bo Chen and Ling Yu , “Analysis of Web Security
Comprehensive Evaluation Tools”, 2nd International Conference on
Network Security, Wireless Communications and Trusted Computing,
IEEE 2010.

[20] Nicha K, JiraPun Daengdej . “A Black box test case generation”,
International Journal of Computer Science and Information Security
(IJCSIS), September 2010.

[21] B. Beizer, “Software Testing Techniques”, Second Edition, dreamtech
Press, 2009.

[22] Rajiv chopra, “Software Testing-A Practical Approach”, Fourth Edition,
Katsons, 2013.

[23] K. Mustafa, R. A. Khan, “Software Testing – Concepts and Practices”,
Narosa Publishing House, 2007.

[24] Lixin Wang, “A Program Segmentation Method for Testing Data
Generating Based on Path Coverage”, IEEE, 2010.

p1

p3 p2

p7 p4

p3 p5 p6

p5 p6 p1

1350 2013 3rd IEEE International Advance Computing Conference (IACC)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

