Analysis of Doubly Reinforced Beam

Design Capacity of Doubly Reinforced Beam

- Fig. (a): Beams with both tensile and compressive steel are referred to as doubly reinforced beams. The steel that is used on the compression sides of beams is called compression steel (A'_S) and the steel on the tension side is called tensile steel (A_S).
- The nominal resisting moment of the beam is assumed to consist of two parts, shown in Fig.(b) and Fig.(c).
- Fig. (b): First part is the moment (M_{n1}) resisted by compression concrete (shaded gray) and the balancing tensile reinforcing (A_{s1}).

$$M_{n1} = A_{s1} f_y \left(d - \frac{a}{2} \right)$$

Fig. (c): Second part is the moment (M_{n2}) resisted by the compression steel (A'_s) and the balancing amount of the additional tensile steel (A_{s2}).

$$M_{n2} = A_{s2}f_s'(d-d')$$

The total design moment capacity is found by adding the two nominal capacities and multiplying by ϕ .

$$\phi M_n = \phi (M_{n1} + M_{n2})$$

$$\phi M_n = \phi \left[A_{s1} f_y \left(d - \frac{a}{2} \right) + A_{s2} f'_s (d - d') \right]$$

Sym.	Description	Remarks
A_{s}	Total tensile steel area, $A_s = A_{s1} +$	Known
A_s'	A _{s2} Compression steel area	Known
A_{s1}	Tensile steel area that balances concrete compression	Unknown
A_{s2}	Tensile steel area that balances A'_s	Unknown
f _y f' _s	Stress in tensile steel Stress in compressive steel	Known Unknown

Determination of A_{s1} and A_{s2} (If Compression Steel Yields)

Doubly Reinforced Beam

Fig. (c): By writing the force equilibrium equation,

$$C=T; A_{s2}f_y=A_s'f_s'$$

- The tensile steel always yields (f_y), but the stress in compression steel (f'_e) may reach yield strength or not.
- Fig. (d): To determine f'_s , we must know the strain in compression steel (ϵ'_s). From the two similar triangles in the compressive zone (magenta), we write,

$$\frac{\epsilon_{\rm S}'}{c-d'} = \frac{\epsilon_{\rm U}}{c}; \qquad \boxed{\epsilon_{\rm S}' = \left(\frac{c-d'}{c}\right)\epsilon_{\rm U}}$$

- If, $\epsilon_s' \geq \epsilon_y$, then compression steel has yielded, if $\epsilon_s' < \epsilon_y$, then compression steel has not yielded. Here, ϵ_v is the yield strain of steel.
- If, $\epsilon'_s \ge \epsilon_y$, then f'_s becomes equal to f_y . Therefore,

$$A_{s2}f_y = A'_sf'_s;$$
 $A_{s2}f_y = A'_sf_y;$ $A_{s2} = A'_s$

The A_{s1} is now easily found using following equation,

$$A_{s} = A_{s1} + A_{s2};$$
 $A_{s1} = A_{s} - A_{s2}$

Note: The case of compression steel not yielded is beyond of the scope of this text.

Example 1

Ques. Determine design moment capacity of the doubly reinforced beam. Given that, *compressive* steel has yielded and $\epsilon_t > 0.005$. Take, $f_C' = 3$ ksi, $f_V = 60$ ksi.

Solution.

From the given beam,

$$A_s = 4 \times 1.56 = 6.24 \text{ in}^2$$

 $A'_s = 2 \times 1.00 = 2.00 \text{ in}^2$

Find Depth of Whitney's Stress Block

It is given that compression steel has yielded, therefore, $f'_s = f_y = 60$ ksi.

$$T = C;$$
 $T_{\text{steel}} = C_{\text{conc}} + C_{\text{comp. steel}}$ $A_s f_y = 0.85 f'_c ab + A'_s f'_s$ $6.24 \times 60 = 0.85 \times 3 \times a \times 14 + 2.00 \times 60$ $a = 7.13 \text{ in}$

Determine Steel Area A_{s1} and A_{s2}

The formula $A'_s = A_{s2}$ applies if compression steel yields.

$$A_{s2} = A'_{s} = 2.00 \text{ in}^{2}$$

 $A_{s1} = A_{s} - A_{s2} = 6.24 - 2.00 = 4.24 \text{ in}^{2}$

Determine Capacity

It is given that $\epsilon_t > 0.005$, therefore, $\phi = 0.90$.

$$\phi M_n = \phi \left[A_{s1} f_y \left(d - \frac{a}{2} \right) + A_s' f_s' (d - d') \right]$$

$$= 0.90 \left[4.24 \times 60 \left(24 - \frac{7.13}{2} \right) + 2 \times 60 \times (24 - 2.5) \right]$$

$$= 7000 \text{ k-in} = 583.4 \text{ k-ft } (Ans.)$$

Example 2

Ques. Determine design moment capacity of the doubly reinforced beam. Given that, $f'_c = 3$ ksi, $f_y = 60$ ksi.

Solution.

It's the same beam of the previous problem, Ex. 1. But it is not given that the compression steel yields and the validity of $\epsilon_t > 0.005$ is also unknown. We must verify these ourselves.

It will be assumed that compression steel has yielded, $f'_{c} = f_{V} = 60$ ksi, and the assumption will be checked later.

Find Depth of Whitney's Stress Block

$$A_s f_y = 0.85 f'_c ab + A'_s f'_s$$

(4×1.56)×60 = 0.85×3×a×14 + 2.00×60; a = 7.13 in

Find Depth of Neutral Axis

$$c = \frac{a}{\beta} = \frac{7.13}{0.85} = 8.39 \text{ in}$$

Check Compression Steel Strain

$$\epsilon_s' = \left(\frac{c - d'}{c}\right) \epsilon_u = \left(\frac{8.39 - 2.5}{8.39}\right) 0.003 = 0.00211$$

$$\epsilon_y = \frac{f_y}{F} = \frac{60 \text{ ksi}}{30000 \text{ ksi}} = 0.00206$$

Since, $\epsilon_s' > \epsilon_y$, compression steel has yielded. Therefore, the assumption, $f_s' = f_y = 60$ ksi, was correct.

Determine Steel Area A_{s1} and A_{s2}

$$A_{s2} = A'_s = 2.00 \text{ in}^2$$

 $A_{s1} = A_s - A_{s2} = 6.24 - 2.00 = 4.24 \text{ in}^2$

Check Tensile Steel Strain

$$\epsilon_t = \left(\frac{d-c}{c}\right)\epsilon_u = \left(\frac{24 - 8.39}{8.39}\right)0.003 = 0.0055$$

Since $\epsilon_t > 0.005$, therefore, $\phi = 0.90$.

Determine Capacity

$$\phi M_n = \phi \left[A_{s1} f_y \left(d - \frac{a}{2} \right) + A'_s f_y (d - d') \right]$$

$$= 0.90 \left[4.24 \times 60 \left(24 - \frac{7.13}{2} \right) + 2 \times 60 \times (24 - 2.5) \right]$$

$$= 7000 \text{ k-in} = 583.4 \text{ k-ft } (Ans.)$$